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1 Introduction

Wavelets are a mathematical tool for hierarchically decomposing
functions. They allow a function to be described in terms of a coarse
overall shape, plus details that range from broad to narrow. Regard-
less of whether the function of interest is an image, a curve, or a sur-
face, wavelets offer an elegant technique for representing the levels
of detail present. This primer is intended to provide people working
in computer graphics with some intuition for what wavelets are, as
well as to present the mathematical foundations necessary for study-
ing and using them. In Part 1, we discuss the simple case of Haar
wavelets in one and two dimensions, and show how they can be used
for image compression. In Part 2, we will present the mathematical
theory of multiresolution analysis, then develop spline wavelets and
describe their use in multiresolution curve and surface editing.

Although wavelets have their roots in approximation theory [5] and
signal processing [13], they have recently been applied to many
problems in computer graphics. These graphics applications in-
clude image editing [1], image compression [6], and image query-
ing [10]; automatic level-of-detail control for editing and render-
ing curves and surfaces [7, 8, 12]; surface reconstruction from con-
tours [14]; and fast methods for solving simulation problems in ani-
mation [11] and global illumination [3, 4, 9, 15]. For a discussion of
wavelets that goes beyond the scope of this primer, we refer readers
to our forthcoming monograph [16].

We set the stage here by first presenting the simplest form of
wavelets, the Haar basis. We cover one-dimensional wavelet trans-
forms and basis functions, and show how these tools can be used to
compress the representation of a piecewise-constant function. Then
we discuss two-dimensional generalizations of the Haar basis, and
demonstrate how to apply these wavelets to image compression.

Because linear algebra is central to the mathematics of wavelets, we
briefly review important concepts in Appendix A.

2 Wavelets in one dimension

The Haar basis is the simplest wavelet basis. We will first discuss
how a one-dimensional function can be decomposed using Haar
wavelets, and then describe the actual basis functions. Finally, we
show how using the Haar wavelet decomposition leads to a straight-
forward technique for compressing a one-dimensional function.

2.1 One-dimensional Haar wavelet transform

To get a sense for how wavelets work, let’s start with a simple exam-
ple. Suppose we are given a one-dimensional “image” with a reso-
lution of four pixels, having values�
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We can represent this image in the Haar basis by computing a
wavelet transform. To do this, we first average the pixels together,
pairwise, to get the new lower resolution image with pixel values�

8 4
�

Clearly, some information has been lost in this averaging process.
To recover the original four pixel values from the two averaged val-
ues, we need to store some detail coefficients, which capture the
missing information. In our example, we will choose 1 for the first
detail coefficient, since the average we computed is 1 less than 9
and 1 more than 7. This single number allows us to recover the first
two pixels of our original four-pixel image. Similarly, the second
detail coefficient is �1, since 4 + (�1) = 3 and 4� (�1) = 5.

Thus, we have decomposed the original image into a lower resolu-
tion (two-pixel) version and a pair of detail coefficients. Repeating
this process recursively on the averages gives the full decomposi-
tion:

Resolution Averages Detail coefficients
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Finally, we will define the wavelet transform (also called the wavelet
decomposition) of the original four-pixel image to be the single co-
efficient representing the overall average of the original image, fol-
lowed by the detail coefficients in order of increasing resolution.
Thus, for the one-dimensional Haar basis, the wavelet transform of
our original four-pixel image is given by�

6 2 1 �1
�

The way we computed the wavelet transform, by recursively aver-
aging and differencing coefficients, is called afilter bank—a process
we will generalize to other types of wavelets in Part 2 of our tuto-
rial. Note that no information has been gained or lost by this process.
The original image had four coefficients, and so does the transform.
Also note that, given the transform, we can reconstruct the image to
any resolution by recursively adding and subtracting the detail co-
efficients from the lower resolution versions.

Storing the image’s wavelet transform, rather than the image itself,
has a number of advantages. One advantage of the wavelet trans-
form is that often a large number of the detail coefficients turn out
to be very small in magnitude, as in the example of Figure 1. Trun-
cating, or removing, these small coefficients from the representa-
tion introduces only small errors in the reconstructed image, giving
a form of “lossy” image compression. We will discuss this particu-
lar application of wavelets in Section 2.3, after we present the one-
dimensional Haar basis functions.



V4 approximation

V3 approximation W3 detail coefficients

V2 approximation W2 detail coefficients

V1 approximation W1 detail coefficients

V0 approximation W0 detail coefficient

Figure 1 A sequence of decreasing-resolution approximations to a
function (left), along with the detail coefficients required to recapture
the finest approximation (right). Note that in regions where the true
function is close to being flat, a piecewise-constant approximation
works well, so the corresponding detail coefficients are relatively
small.

2.2 One-dimensional Haar wavelet basis functions

We have shown how one-dimensional images can be treated as se-
quences of coefficients. Alternatively, we can think of images as
piecewise-constant functions on the half-open interval [0, 1). To do
so, we will use the concept of a vector space from linear algebra.
A one-pixel image is just a function that is constant over the entire
interval [0, 1). We’ll let V0 be the vector space of all these func-
tions. A two-pixel image has two constant pieces over the inter-
vals [0, 1=2) and [1=2, 1). We’ll call the space containing all these
functions V1. If we continue in this manner, the space Vj will in-
clude all piecewise-constant functions defined on the interval [0, 1)
with constant pieces over each of 2j equal subintervals.

We can now think of every one-dimensional image with 2j pixels as
an element, or vector, in Vj. Note that because these vectors are all
functions defined on the unit interval, every vector inVj is also con-
tained in Vj+1. For example, we can always describe a piecewise-
constant function with two intervals as a piecewise-constant func-
tion with four intervals, with each interval in the first function cor-
responding to a pair of intervals in the second. Thus, the spacesVj

are nested; that is,

V0 � V1 � V2 � � � �

The mathematical theory of multiresolution analysis requires this
nested set of spaces Vj. We will consider this topic more thoroughly
in Part 2.

Now we need to define a basis for each vector space Vj. The basis
functions for the spaces Vj are called scaling functions, and are usu-
ally denoted by the symbol�. A simple basis for Vj is given by the
set of scaled and translated “box” functions:

�j
i(x) := �(2jx � i), i = 0, : : : , 2j � 1,

where

�(x) :=

�
1 for 0 � x < 1
0 otherwise.

As an example, Figure 2 shows the four box functions forming a ba-
sis for V2.

The next step is to choose an inner product defined on the vector
spaces Vj. The “standard” inner product,

hf j gi :=

Z 1

0

f (x) g(x) dx,

for two elements f , g 2 Vj will do quite well for our running ex-
ample. We can now define a new vector spaceWj as the orthogonal
complement of Vj in Vj+1. In other words, we will let Wj be the space
of all functions in Vj+1 that are orthogonal to all functions inVj under
the chosen inner product. Informally, we can think of the wavelets
in Wj as a means for representing the parts of a function inVj+1 that
cannot be represented in Vj.

A collection of linearly independent functions j
i(x) spanning Wj are

called wavelets. These basis functions have two important proper-
ties:

1. The basis functions j
i of Wj, together with the basis functions�j

i

of Vj, form a basis for Vj+1.

2. Every basis function  j
i of Wj is orthogonal to every basis func-

tion �j
i of Vj under the chosen inner product.1

Thus, the “detail coefficients” of Section 2.1 are really coefficients
of the wavelet basis functions.

The wavelets corresponding to the box basis are known as theHaar
wavelets, given by

 j
i(x) :=  (2jx � i), i = 0, : : : , 2j � 1,

where

 (x) :=

(
1 for 0 � x < 1=2

�1 for 1=2 � x < 1
0 otherwise.

Figure 3 shows the two Haar wavelets spanning W1.

Before going on, let’s run through our example from Section 2.1
again, but now applying these more sophisticated ideas.

We begin by expressing our original imageI(x) as a linear combi-
nation of the box basis functions in V2:

I(x) = c2
0 �

2
0(x) + c2

1 �
2
1(x) + c2

2 �
2
2(x) + c2

3 �
2
3(x).

1Some authors refer to functions with these properties aspre-wavelets,
reserving the term “wavelet” for functions j

i that are also orthogonal to each
other.
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Figure 2 The box basis for V2.
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Figure 3 The Haar wavelets for W1.

A more graphical representation is

I(x) = 9 �

+ 7 �

+ 3 �

+ 5 �

Note that the coefficients c2
0, : : : , c2

3 are just the four original pixel
values [9 7 3 5].

We can rewrite the expression for I(x) in terms of basis functions
in V1 and W1, using pairwise averaging and differencing:

I(x) = c1
0 �

1
0(x) + c1

1 �
1
1(x) + d1

0  
1
0(x) + d1

1  
1
1(x)

= 8 �

+ 4 �

+ 1 �

+ �1 �

These four coefficients should look familiar as well.

Finally, we’ll rewrite I(x) as a sum of basis functions in V0, W0,
and W1:

I(x) = c0
0 �

0
0(x) + d0

0  
0
0(x) + d1

0  
1
0(x) + d1

1  
1
1(x)

= 6 �

+ 2 �

+ 1 �

+ �1 �

Once again, these four coefficients are the Haar wavelet transform
of the original image. The four functions shown above constitute
the Haar basis for V2. Instead of using the usual four box functions,
we can use �0

0, 0
0 , 1

0 , and  1
1 to represent the overall average, the

broad detail, and the two types of finer detail possible in a function
in V2. The Haar basis for Vj with j > 2 includes these functions as
well as narrower translates of the wavelet (x).

Orthogonality

The Haar basis possesses an important property known as orthog-
onality, which is not always shared by other wavelet bases. An or-
thogonal basis is one in which all of the basis functions, in this case
�0

0, 0
0 , 1

0 , 1
1, : : :, are orthogonal to one another. Note that orthogo-

nality is stronger than the minimum requirement for wavelets that j
i

be orthogonal to all scaling functions at the same resolution level j.

Normalization

Another property that is sometimes desirable is normalization. A
basis function u(x) is normalized if hu j ui = 1. We can normalize
the Haar basis by replacing our earlier definitions with

�j
i(x) := 2j=2 �(2jx � i)

 j
i(x) := 2j=2  (2jx � i),

where the constant factor of 2j=2 is chosen to satisfy hu j ui = 1 for
the standard inner product. With these modified definitions, the new
normalized coefficients are obtained by multiplying each old coef-
ficient with superscript j by 2�j=2. Thus, in the example from the
previous section, the unnormalized coefficients [6 2 1�1] become
the normalized coefficients�

6 2 1p
2

�1p
2

�
As an alternative to first computing the unnormalized coefficients
and then normalizing them, we can include normalization in the de-
composition algorithm. The following two pseudocode procedures
accomplish this normalized decomposition:

procedure DecompositionStep(C: array [1. . h] of reals)
for i 1 to h=2 do

C0[i] (C[2i� 1] + C[2i])=
p

2
C0[h=2 + i] (C[2i� 1]� C[2i])=

p
2

end for
C C0

end procedure

procedure Decomposition(C: array [1. . h] of reals)
C C=

p
h (normalize input coefficients)

while h > 1 do
DecompositionStep(C[1. . h])
h h=2

end while
end procedure

Now we can work with an orthonormal basis, meaning one that is
both orthogonal and normalized. Using an orthonormal basis turns
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out to be handy when compressing a function or an image, which
we describe next.

2.3 Application I: Compression

The goal of compression is to express an initial set of data using
some smaller set of data, either with or without loss of information.
For instance, suppose we are given a function f (x) expressed as a
weighted sum of basis functions u1(x), : : : , um(x):

f (x) =
mX

i=1

ci ui(x).

The data set in this case consists of the coefficients c1, : : : , cm. We
would like to find a function approximating f (x) but requiring fewer
coefficients, perhaps by using a different basis. That is, given a user-
specified error tolerance � (for lossless compression, � = 0), we are
looking for

f̃ (x) =
m̃X

i=1

c̃i ũi(x)

such that m̃ < m and kf (x) � f̃ (x)k � � for some norm. In general,
you could attempt to construct a set of basis functionsũ1, : : : , ũm̃ that
would provide a good approximation with few coefficients. We will
focus instead on the simpler problem of finding a good approxima-
tion in a fixed basis.

One form of the compression problem is to order the coeffi-
cients c1, : : : , cm so that for every m̃ < m, the first m̃ elements of
the sequence give the best approximation f̃ (x) to f (x) as measured
in the L2 norm. As we show here, the solution to this problem is
straightforward if the basis is orthonormal, as is the case with the
normalized Haar basis.

Let � be a permutation of 1, : : : , m, and let f̃ (x) be a function that
uses the coefficients corresponding to the firstm̃ numbers of the per-
mutation �:

f̃ (x) =
m̃X

i=1

c�(i) u�(i).

The square of the L2 error in this approximation isf (x) � f̃ (x)
2

2
= hf (x) � f̃ (x) j f (x) � f̃ (x)i

=

* mX
i=m̃+1

c�(i) u�(i)

mX
j=m̃+1

c�(j) u�(j)

+

=
mX

i=m̃+1

mX
j=m̃+1

c�(i) c�(j) hu�(i) j u�(j)i

=
mX

i=m̃+1

(c�(i))
2

The last step follows from the assumption that the basis is orthonor-
mal, so hui j uji = �ij. We conclude that to minimize this error
for any given m̃, the best choice for � is the permutation that sorts
the coefficients in order of decreasing magnitude; that is, � satis-
fies jc�(1)j � � � � � jc�(m)j.

Figure 1 demonstrated how a one-dimensional function could be
transformed into coefficients representing the function’s overall av-
erage and various resolutions of detail. Now we repeat the process,
this time using normalized Haar basis functions. We can apply L2

16 out of 16 coefficients 14 out of 16 coefficients

12 out of 16 coefficients 10 out of 16 coefficients

8 out of 16 coefficients 6 out of 16 coefficients

4 out of 16 coefficients 2 out of 16 coefficients

Figure 4 Coarse approximations to a function obtained using L2

compression: detail coefficients are removed in order of increasing
magnitude.

compression to the resulting coefficients simply by removing or ig-
noring the coefficients with smallest magnitude. By varying the
amount of compression, we obtain a sequence of approximations to
the original function, as shown in Figure 4.

3 Wavelets in two dimensions

In preparation for image compression, we need to generalize Haar
wavelets to two dimensions. First, we will consider how to perform
a wavelet decomposition of the pixel values in a two-dimensional
image. We then describe the scaling functions and wavelets that
form a two-dimensional wavelet basis.

3.1 Two-dimensional Haar wavelet transforms

There are two ways we can use wavelets to transform the pixel val-
ues within an image. Each is a generalization to two dimensions of
the one-dimensional wavelet transform described in Section 2.1.

To obtain the standard decomposition [2] of an image, we first apply
the one-dimensional wavelet transform to each row of pixel values.
This operation gives us an average value along with detail coeffi-
cients for each row. Next, we treat these transformed rows as if they
were themselves an image and apply the one-dimensional transform
to each column. The resulting values are all detail coefficients ex-
cept for a single overall average coefficient. The algorithm below
computes the standard decomposition. Figure 5 illustrates each step
of its operation.

procedure StandardDecomposition(C: array [1. . h, 1. . w] of reals)
for row 1 to h do

Decomposition(C[row, 1. . w])
end for
for col 1 to w do

Decomposition(C[1. . h, col])
end for

end procedure

The second type of two-dimensional wavelet transform, called the
nonstandard decomposition, alternates between operations on rows
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transform rows
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Figure 5 Standard decomposition of an image.

and columns. First, we perform one step of horizontal pairwise aver-
aging and differencing on the pixel values in each row of the image.
Next, we apply vertical pairwise averaging and differencing to each
column of the result. To complete the transformation, we repeat this
process recursively only on the quadrant containing averages in both
directions. Figure 6 shows all the steps involved in the nonstandard
decomposition procedure below.

procedure NonstandardDecomposition(C: array [1. . h, 1. . h] of reals)
C C=h (normalize input coefficients)
while h > 1 do

for row 1 to h do
DecompositionStep(C[row, 1. . h])

end for
for col 1 to h do

DecompositionStep(C[1. . h, col])
end for
h h=2

end while
end procedure

3.2 Two-dimensional Haar basis functions

The two methods of decomposing a two-dimensional image yield
coefficients that correspond to two different sets of basis functions.
The standard decomposition of an image gives coefficients for a ba-
sis formed by the standard construction [2] of a two-dimensional
basis. Similarly, the nonstandard decomposition gives coefficients
for the nonstandard construction of basis functions.

The standard construction of a two-dimensional wavelet basis con-
sists of all possible tensor products of one-dimensional basis func-
tions. For example, when we start with the one-dimensional Haar
basis for V2, we get the two-dimensional basis for V2 shown in Fig-
ure 7. Note that if we apply the standard construction to an orthonor-
mal basis in one dimension, we get an orthonormal basis in two di-
mensions.

The nonstandard construction of a two-dimensional basis proceeds

. . .

-
transform rows

?

transform
columns

Figure 6 Nonstandard decomposition of an image.

by first defining a two-dimensional scaling function,

��(x, y) := �(x)�(y),

and three wavelet functions,

� (x, y) := �(x) (y)

 �(x, y) :=  (x)�(y)

  (x, y) :=  (x) (y).

We now denote levels of scaling with a superscriptj (as we did in the
one-dimensional case) and horizontal and vertical translations with
a pair of subscripts k and `. The nonstandard basis consists of a sin-
gle coarse scaling function ��0

0,0(x, y):=��(x, y) along with scales
and translates of the three wavelet functions� ,  �, and   :

� j
k`(x, y) := 2j� (2jx � k, 2jy � `)

 �j
k`(x, y) := 2j �(2jx � k, 2jy � `)

  j
k`(x, y) := 2j  (2jx � k, 2jy � `).

The constant 2j normalizes the wavelets to give an orthonormal ba-
sis. The nonstandard construction results in the basis for V2 shown
in Figure 8.

We have presented both the standard and nonstandard approaches
to wavelet transforms and basis functions because both have advan-
tages. The standard decomposition of an image is appealing be-
cause it simply requires performing one-dimensional transforms on
all rows and then on all columns. On the other hand, it is slightly
more efficient to compute the nonstandard decomposition. For an
m � m image, the standard decomposition requires 4(m2 � m) as-
signment operations, while the nonstandard decomposition requires
only 8

3 (m2 � 1) assignment operations.

Another consideration is the support of each basis function, mean-
ing the portion of each function’s domain where that function is non-
zero. All nonstandard Haar basis functions have square supports,
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 1
1(x) �0

0(y) 1
0(x)�0

0(y) 0
0(x)�0

0(y)�0
0(x)�0

0(y)

 1
1(x) 0

0(y) 1
0(x) 0

0(y) 0
0(x) 0

0(y)�0
0(x) 0

0(y)

 1
1(x) 1

0(y) 1
0(x) 1

0(y) 0
0(x) 1

0(y)�0
0(x) 1

0(y)

 1
1(x) 1

1(y) 1
0(x) 1

1(y) 0
0(x) 1

1(y)�0
0(x) 1

1(y)

Figure 7 Standard construction of a two-dimensional Haar wavelet
basis for V2. In the unnormalized case, functions are +1 where plus
signs appear,�1 where minus signs appear, and 0 in gray regions.

while some standard basis functions have nonsquare supports. De-
pending upon the application, one of these choices may be prefer-
able to the other.

3.3 Application II: Image compression

We defined compression in Section 2.3 as the representation of a
function using fewer basis function coefficients than were origi-
nally given. The method we discussed for one-dimensional func-
tions applies equally well to images, which we treat as the coeffi-
cients corresponding to a two-dimensional piecewise-constant ba-
sis. The approach presented here is only introductory; for a more
complete treatment of wavelet image compression, see the article
by DeVore et al. [6].

We can summarize wavelet image compression using the L2 norm
in three steps:

1. Compute coefficients c1, : : : , cm representing an image in a nor-
malized two-dimensional Haar basis.

2. Sort the coefficients in order of decreasing magnitude to produce
the sequence c�(1), : : : , c�(m).

3. Starting with m̃ = m, find the smallest m̃ for whichPm
i=m̃+1(c�(i))2 � �2, where � is the allowable L2 error.

The first step is accomplished by applying either of the two-
dimensional Haar wavelet transforms described in Section 3.1, be-
ing sure to use normalized basis functions. Any standard sorting
technique will work for the second step. However, for large images
sorting becomes exceedingly slow.

The pseudocode below outlines a more efficient method that uses
a binary search strategy to find a threshold below which coefficient
sizes are deemed negligible. The procedure takes as input a one-
dimensional array of coefficients C (with each coefficient corre-
sponding to a two-dimensional basis function) and an error toler-
ance �. For each guess at a threshold � , the algorithm computes the
square of the L2 error that would result from discarding coefficients
smaller in magnitude than � . This squared error s is compared to �2

at each iteration to decide whether the binary search should continue
in the upper or lower half of the current interval. The algorithm halts
when the current interval is so narrow that the number of coefficients

  1
1,1(x, y)  1

0,1(x, y)

  1
1,0(x, y)  1

0,0(x, y)

� 1
1,1(x, y)� 1

0,1(x, y)

� 1
1,0(x, y)� 1

0,0(x, y)

 �1
1,1(x, y) �1

0,1(x, y)

 �1
1,0(x, y) �1

0,0(x, y)

  0
0,0(x, y)� 0

0,0(x, y)

 �0
0,0(x, y)��0

0,0(x, y)

Figure 8 Nonstandard construction of a two-dimensional Haar
wavelet basis for V2.

to be discarded no longer changes.

procedure Compress(C: array [1. . m] of reals; �: real)
�min  min f jC[i]j g
�max  max f jC[i]j g
do
�  (�min + �max)=2
s 0
for i 1 to m do

if jC[i]j < � then s s + (C[i])2

end for
if s < �2 then �min  � else �max  �

until �min � �max

for i 1 to m do
if jC[i]j < � then C[i] 0

end for
end procedure

This binary search algorithm was used to produce the images in
Figure 9. These images demonstrate the high compression ratios
wavelets offer, as well as some of the artifacts they introduce.

DeVore et al. [6] suggest that the L1 norm is best suited to the
task of image compression. Here is a pseudocode fragment for a
“greedy” L1 compression scheme:

for each pixel (x, y) do
�[x, y] 0

end for
for i 1 to m do
�0  � + error from discarding C[i]
if
P

x,y
j�0[x, y]j < � then

discard coefficient C[i]
�  �0

end if
end for

Note that this algorithm’s results depend on the order in which coef-
ficients are visited. Different images (and degrees of compression)
may be obtained from varying this order—for example, by start-
ing with the finest scale coefficients, rather than the smallest coef-
ficients. You could also run a more sophisticated constrained op-
timization procedure to select the minimum number of coefficients
subject to the error bound.
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(a) (b) (c) (d)

Figure 9 L2 wavelet image compression: The original image (a) can be represented using (b) 19% of its wavelet coefficients, with 5% relativeL2

error; (c) 3% of its coefficients, with 10% relativeL2 error; and (d) 1% of its coefficients, with 15% relativeL2 error.

4 Conclusion

We have described Haar wavelets in one and two dimensions as well
as how to use them for compressing functions and images. Part 2
of this primer will continue this exposition by presenting the math-
ematical framework of multiresolution analysis. We will also de-
velop a class of wavelets based on endpoint-interpolating B-splines,
and describe how to use them for multiresolution curve and surface
editing.
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A Linear algebra review

The mathematics of wavelets rely heavily on fundamental ideas
from linear algebra. This appendix reviews a few important ideas.

A.1 Vector spaces

The starting point for linear algebra is the notion of a vector space.
A vector space (over the reals) can be loosely defined as a collec-
tion V of elements where

1. For all a, b 2 IR and for all u, v 2 V, au + bv 2 V.

2. There exists a unique element 0 2 V such that

� for all u 2 V, 0u = 0, and

� for all u 2 V, 0 + u = u.

3. Other axioms (omitted here) hold true, most of which are neces-
sary to guarantee that multiplication and addition behave as ex-
pected.

The elements of a vector space V are called vectors, and the el-
ement 0 is called the zero vector. The vectors may be geometric
vectors, or they may be functions, as is the case when discussing
wavelets and multiresolution analysis.

A.2 Bases and dimension

A collection of vectors u1, u2, : : : in a vector space V are said to be
linearly independent if

c1u1 + c2u2 + � � � = 0 if and only if c1 = c2 = � � � = 0.

A collection u1, u2, : : : 2 V of linearly independent vectors is abasis
for V if every v 2 V can be written as

v =
X

i

ci ui

for some real numbers c1, c2, : : : . The vectors in a basis for V are
said to span V. Intuitively speaking, linear independence means that
the vectors are not redundant, and a basis consists of a minimal com-
plete set of vectors.

If a basis for V has a finite number of elements u1, : : : , um, then V
is finite-dimensional and its dimension is m. Otherwise, V is said to
be infinite-dimensional.

Example: IR3 is a three-dimensional space, and e1 =
(1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) is a basis for it.

Example: The set of all functions continuous on [0, 1] is
an infinite-dimensional vector space. We’ll call this space
C[0, 1].

A.3 Inner products and orthogonality

When dealing with geometric vectors from the vector space IR3, the
“dot product” operation has a number of uses. The generalization of
the dot product to arbitrary vector spaces is called an inner product.
Formally, an inner product h� j �i on a vector space V is any map from
V � V to IR that is

1. symmetric: hu j vi = hv j ui,

2. bilinear: hau + bv jwi = ahu jwi + bhv jwi, and

3. positive definite: hu j ui > 0 for all u 6= 0.

A vector space together with an inner product is called, not surpris-
ingly, an inner product space.

Example: It is straightforward to show that the dot product
on IR3 defined by

h(a1, a2, a3) j (b1, b2, b3)i := a1b1 + a2b2 + a3b3 (1)

satisfies the requirements of an inner product.

Example: The following “standard” inner product on
C[0, 1] plays a central role in most formulations of multires-
olution analysis:

hf j gi :=

Z 1

0

f (x) g(x) dx.

The standard inner product can also be generalized to include
a positive weight function w(x):

hf j gi :=

Z 1

0

w(x) f (x) g(x) dx.

One of the most important uses of the inner product is to formalize
the idea of orthogonality. Two vectors u, v in an inner product space
are said to be orthogonal if hu j vi = 0. It is not difficult to show
that a collection u1, u2, : : : of mutually orthogonal vectors must be
linearly independent, suggesting that orthogonality is a strong form
of linear independence. An orthogonal basis is one consisting of
mutually orthogonal vectors.

A.4 Norms and normalization

A norm is a function that measures the length of vectors. In a finite-
dimensional vector space, we typically use the normkuk:=hu j ui1=2.
If we are working with a function space such asC[0, 1], we ordinar-
ily use one of the Lp norms, defined as

kukp :=

�Z 1

0

ju(x)jp dx

�1=p

In the limit as p tends to infinity, we get what is known as the max-
norm:

kuk1 := max
x2[0,1]

ju(x)j.

Even more frequently used is theL2 norm, which can also be written
as kuk2 = hu j ui1=2 if we are using the standard inner product.

A vector u with kuk = 1 is said to be normalized. If we have an
orthogonal basis composed of vectors that are normalized in theL2

norm, the basis is called orthonormal. Stated concisely, a basis
u1, u2, : : : is orthonormal if

hui j uji = �ij,

where �ij is called the Kronecker delta and is defined to be 1 if i = j,
and 0 otherwise.

Example: The vectors e1 = (1, 0, 0), e2 = (0, 1, 0), e3 =
(0, 0, 1) form an orthonormal basis for the inner product space
IR3 endowed with the dot product of Equation (1).
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