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Abstract  

To immerse a player into a highly interactive game environment with fast-paced 

action, a computer game must deliver a consistent and responsive experience. 

However, this may be difficult to realize when a computer game is played over a 

network connection because network environments introduce various constraints 

such as an always limited amount of bandwidth that can be used to share 

information, and a delay before information arrives at its destination, also known 

as latency or lag. Any network architecture for a computer game implements a 

trade between: consistency, responsiveness, bandwidth and latency requirements. 

Finding the right balance depends on the type of computer game and the network 

environment. This paper presents the network architecture implemented for the 

first person shooter DOOM III. This architecture improves upon previous network 

architectures used in the computer games Quake, Quake II, and Quake III Arena. 

1. Introduction  

A First Person Shooter (FPS) is a game where the player moves through a real-time virtual 

environment, while looking at this environment from a first person perspective. The player looks 

through the eyes of the avatar controlled by the player. All the player can see of the avatar, are 

his hands and/or the weapon which he holds. In a first person shooter the most important tasks 

are staying alive and eliminating virtual opponents with a variety of weapons. First person 

shooters are highly interactive and typically fast-paced, emphasizing speed and accuracy. A good 

first person shooter is designed to immerse the player in the action.  

Multiplayer gaming is about shared reality. Multiple players share experiences in a virtual 

environment, and although looking from different viewpoints, everyone sees the same changes 

and events take place within this virtual environment. Each player has his or her own computer 

and these computers are hooked up to each other through a local network or the Internet. The 

network is used to share information such that all players experience the same virtual 

environment.  
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To immerse a player into a highly interactive multiplayer game environment with fast-paced 

action, the game must deliver a consistent and responsive experience. It is very important that the 

players receive direct and immediate feedback to their actions. It is also important that all the 

players see events take place in the same way other players witness those events. However, 

network environments introduce constraints that make it difficult to realize a consistent and 

responsive game environment. First of all there is always a limited amount of bandwidth 

available and only so much information can be sent over the network. Furthermore, information 

sent over a network does not immediately arrive at the receiver. It takes time between one 

computer sending information and another computer receiving the information. This is also 

known as latency and in multiplayer games often referred to as lag [10]. Although the available 

bandwidth of Internet connections has significantly improved over the years, latencies have not 

improved as much. Even when fast glass fiber connections are used, a relatively large latency 

cannot be avoided if people located in different parts of the world want to play with each other.  

In multiplayer games there will always be individuals that feel the need to overcome lack of skill 

with ingenuity, by exploiting bugs or holes in a network architecture, or by implementing various 

cheats. When designing a network architecture it is important to consider the cheats to which the 

system may be vulnerable. Another important issue is security [27, 28, 29]. Individuals may try 

to take down servers or otherwise disrupt games. Perhaps even worse, individuals may try to use 

the game as a tool to attack computers on a network or the Internet. A robust network 

architecture can withstand attacks and abuse. Last but not least portability may play a role in the 

design of a network architecture. Some network models are better suited for cross platform 

multiplayer gaming than others.  

The game state in a first person shooter is typically modeled as a list of game objects or entities. 

Players, enemies, projectiles, doors etc. are all entities in the game. Instead of treating all of these 

differently, as special purpose elements, it is convenient to bind them together into a system that 

provides a common structure and common methods of communication. Class hierarchies and 

functional components are typically used to model the different entities [5]. Networking in first 

person shooters is all about synchronizing the state of multiple copies of the same game entities 

such that all players experience the same changes and events in the virtual environment. Some 

network models require all players to manage and maintain their own copy of all game entities 

where the same rules and methods are used to advance the state of these objects synchronously. 

Other network models continuously communicate changes to the state of entities over the 

network.  

1.1 Previous Work  

Peer-to-Peer  

The networking engine in the original DOOM (1994) is a peer-to-peer system. Each player in the 

game is an independent "peer" running its own copy of the game. This peer-to-peer system can 

also be considered a synchronous networking system. All players run their own copy of the game 

synchronously. Periodically (every 1/35th of a second), the input from a player (from keyboard, 

mouse, etc.) is sampled and placed into a tick command. This is a simple structure which stores 

how the player wishes to move: there are fields for forward/backward movement, sideways 
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movement (strafing), turning, and actions such as "use" and "fire". The tick command is 

transmitted to all other players in the game. The networking engine periodically checks for 

newly received packets. Tick commands from other players are stored in a buffer. When tick 

commands from all players have been received, the game advances. The game advances 

independently from generating tick commands such that a player may generate commands to be 

used several ticks into the future, even though the game has not yet advanced to that point. As a 

result the game itself will not slow down, but there may be a delay between pressing a key, and 

the desired action occurring. The delay depends on the latency between players and the 

playability of the game is dependent on the player with the slowest connection.  

 

Fig. 1. Peer-to-Peer network with four players. 

The advantage of synchronous networking is the simplicity of the system. The system is easy to 

implement and only simple small messages are sent around to other players. However, there are 

also several disadvantages.  

All players have to maintain a perfectly synchronized copy of the game. If inconsistencies occur 

between the copies of the game the players will start to play their own "version" of the game 

which is no longer the same as the "version" of other players. In a complex game engine there 

are many places where inconsistencies can be introduced. Even a single bit difference in a 

floating-point number can escalate into huge changes in the game environment. To avoid 

inconsistencies the game state must be maintained without relying on any frame rate or computer 

hardware dependent input. For instance, the game state may be modified by introducing objects 

that move and shake based on the volume of sounds in the environment. Inconsistencies can 

easily be introduced if the sound volume in any way depends on a specific sound card or a 

different sampling rate based on the speed of the computer. Reading back data from the graphics 

card, for instance for hit detection, may also introduce inconsistencies because different players 

may use different graphics cards that produce different results. Inconsistencies can also be 

introduced by different drivers being used on various computers. A driver may for instance 

change the floating-point rounding mode of the floating-point unit (FPU) during game play 

which causes different results to be calculated on computers with different drivers. Uninitialized 

variables in the game code can also introduce inconsistencies. Such uninitialized variables 

should really be considered code bugs but during development they may occur frequently and as 

a result the networking may break as frequently.  

In a complex game engine the cause for a specific inconsistency is typically hard to find because 

the time between the introduction of the inconsistency and the results being noticeable during 
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game play may be relatively long. If a single bit ends up being different between two copies of 

the game it may take some time before this difference escalates into a noticeable but significant 

difference to the players.  

A synchronous network system is also not cross platform compatible. Players on different 

platforms will not be able to play with each other. On different hardware different assembler 

instructions may be used that produce (slightly) different results. Any such differences may 

introduce inconsistencies. Even if the underlying hardware is the same, for instance when using a 

combination of Microsoft Windows and Linux systems on x86 based hardware, inconsistencies 

may be introduced. Different compilers are typically used on different platforms and floating-

point assembler instructions may be rearranged differently during optimization. Different 

floating-point instruction sequences usually produce results with different rounding, and such 

differences can also easily introduce inconsistencies.  

Another problem with a synchronous network system is that the responsiveness and playability 

degrade quickly as the network latency of players increases. There is a full ping time (roundtrip 

latency) between sampling the player input and processing the input in the game. As a result the 

player only sees a change on screen a full ping time after issuing a command or pressing a key. 

On a Local Area Network (LAN) this is not a problem because ping times are usually below 10 

milliseconds. However, on the Internet ping times can easily go up to 100 milliseconds or more. 

The responsiveness of the game is not good when there is 1/10th of a second between sampling 

input and visualizing a response on screen. On the Internet the ping times may also fluctuate or 

there may be congestion and sudden stalls that further degrade the playability because the game 

will stall as well.  

In a game like DOOM III the game is updated at a fixed 60 Hz tick. Each player samples input at 

this rate and in a peer-to-peer system tick commands would be sent to all other players. Even 

though the tick commands result in rather small network messages, in a game with just four 

players the amount of traffic being generated already exceeds the bandwidth available on a 56k6 

modem. Furthermore, the bandwidth requirements increase exponentially with the number of 

players in the game.  

In a synchronous network system each player maintains a copy of the game and only tick 

commands are sent over the network. Therefore all players have to start the game together at the 

same time to be able to maintain a consistent copy of the game. New players cannot come and go 

as they please. This forces the development of additional functionality for match making or a 

lobby system [4], because players cannot simply search for an existing game and join at will.  

Last but not least a synchronous network system creates opportunities for various cheats. A 

player cannot modify the game state directly because that would introduce inconsistencies. 

However, each player maintains a complete copy of the game and can use all kinds of 

visualization cheats to look at things the player is not supposed to see.  
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Packet Server  

The peer-to-peer network model can be extended with a packet server. This model is basically 

the same as peer-to-peer model but with elements of a client-server architecture. Like the peer-

to-peer model each player individually keeps track of the game state. However, each player no 

longer has a connection to all other players like in the original DOOM. In this model there is a 

'packet server' running on the computer of one of the players. Everyone has one connection to 

this packet server. Tick commands are first sent to this server and the server relays all tick 

commands to other players. If one of the players has a high latency connection, only that player 

will experience a less responsive game, and the packet server will continue to send (possible 

duplicated) tick commands for that player to the other players. Using this model the players no 

longer need a low latency connection to all other players. The down-side of using a 'packet 

server' is that the game cannot continue if the player that runs the 'packet server' leaves the game. 

This network model does, however, solves some of the problems of the peer-to-peer network 

model but many of the other problems, as described above, remain.  

Client-Server  

The games Quake (1996), Quake II (1997) and Quake III Arena (1999) implement a so called 

client-server network architecture. In this model one computer is a "server" and is responsible for 

making all game play decisions. The other computers are "clients" and they are similar to dumb 

rendering terminals. A client sends input such as keystrokes and view angles to the server, and 

the client receives a list with entities to render. This network model does not suffer from de-

synchronized network games, that could occur from clients disagreeing with each other, because 

the server is always the final authority. Players are also able to join and leave a game at any time 

because the players do not need to maintain the full game state. The server sends the list with 

entities to render as a sequence of game state updates also known as snapshots. Uncompressed, 

these updates can be quite large and require a lot of bandwidth. To reduce the bandwidth 

requirements the snapshots are delta compressed from the last acknowledged snapshot the client 

received. Furthermore, the updates are sent infrequently, typically at a rate between 10 and 20 

Hz. However, for full interaction a higher frame rate is required at the client. To present a 

smoothly changing, interactive environment, the client interpolates between, or extrapolates from 

the last two snapshots.  

Without special measures this network model would face the same problem as the peer-to-peer 

model described above when it comes down to the responsiveness and playability degrading as 

the network latency of players increases. The client sends input to the server where this input is 

processed, and the client only receives a response with the next snapshot from the server. In 

other words, using this network model there would also be at least a full ping time between 

sampling the input and seeing the results on screen at the client. To overcome this problem, 

client side prediction of the player movement is used. The input is not only sent to the server, but 

is also processed immediately at the client to move the view point and as such improve the 

perceived responsiveness. However, the rest of the environment visualized at the client is still the 

results of an interpolation between, or extrapolation from the last two snapshots. In other words, 

the player moves in the (predicted) present and what the player sees on screen is from the past.  
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Fig. 2. Client-Server network with four players. 

The client-server network model can also be considered an asynchronous network architecture. 

The upstream and downstream communication at the client and server is different. Furthermore, 

the player movement at the client is simulated in the present, while the game state maintained at 

the server is in the past, and the state of the environment visualized at the client is from even 

further back in the past. The network model used in the Quake series of games is very effective 

and has been used in many games since. This network architecture is much better suited for 

playing fast-paced first person shooters over the Internet than the peer-to-peer network model. 

There are, however, still several problems. 

While the client-server network model allows players to join a game in progress, the game 

cannot automatically continue if the server runs on the computer of one of the payers and that 

player decides to leave the game. One solution is to use dedicated servers that never shut down 

(except for computer failures). However, if dedicated servers are not available it may be 

necessary to implement server migration to allow the game to continue even if the player that 

runs the server decides to leave the game. 

With the client side prediction the player moves in the present while what the player sees on 

screen is from the past. As a result the player may be shooting at an opponent which is visualized 

at a position where the opponent was some time ago. However, the hit detection is performed at 

the server in the future. In other words the player has to predict where any targets will be some 

time in the future and has to lead such targets in order to hit them in the future. Even if a player 

has to predict only a 100 milliseconds ahead this can be tricky and requires some practice.  

Some games, like Half-Life, try to alleviate this problem by implementing so called "lag 

compensation" [11]. The idea is to let a player shoot at opponents that are visualized at positions 

from the past and when the server does the hit detection it will go back in time to verify whether 

or not a target was hit in the past. For this purpose the server has to keep track of a history of past 

positions of all possible opponents. This technique does not only add considerable complexity, it 

also has several unwanted side effects. A player with a fast (low latency) connection will 

frequently experience inconsistencies. For example, the player may get shot after the player has 

moved safely around a corner. The worse the connection quality of the other players, the more 

often this will happen. In other words a player is no longer in control of the quality of his own 

game experience.  
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Lag compensation is also inherently flawed because it can cause events to happen that do not 

reflect the shared reality. For instance, take two players, one with a very low ping time and one 

with a high ping time. The players are circling around a tree, such that the tree always blocks the 

line of fire from the perspective of the player with the low ping. The player with a high ping 

moves in the present while looking at an opponent at a position from relatively far back in the 

past. From the perspective of this player the tree does not block the line of fire. With lag 

compensation the player with the high ping can now shoot and hit the player with the low ping 

because the server does hit detection with opponents positioned in the past while keeping the 

position of the player in the present. Obviously in this example the player with the low ping can 

be shot which from the perspective of that player should not be possible. In this particular 

example the problem can be alleviated by not only performing hit detection at the server using 

the position of an opponent in the past, but also checking for a clear line of sight with the 

opponent in the present. A hit is then only recorded when the opponent is hit in the past, and 

there is also a clear line of sight in the present. Although the additional line of sight test may 

make it less likely for players to notice inconsistencies in some situations, it by no means solves 

the problem in that inconsistencies may still occur in other situations.  

Even if lag compensation is considered better than the alternative, it only addresses part of the 

problem. It is not practical for the server to roll back everything in time. So even if the positions 

of opponents are rolled back in time for hit detection, all other interaction at the client is between 

a player that moves in the present and an environment that is from the past, while the server 

verifies all other interaction in the future.  

In Quake III Arena the game code (which runs at the server) and the visualization and prediction 

code (which runs at the client) are separate modules. These modules are often referred to as the 

"game code" and "client game code". Although these modules are separate, each must be fully 

aware of the implementation of the other in order to keep the representation of the game 

reasonably synchronized. Such a strong coupling between separate modules is undesirable 

because it makes extending the game difficult. This separation, yet strong coupling also makes it 

harder for developers that want to use the Quake III Arena engine to implement a single player 

experience. Several times developers have released two executables. One executable for 

multiplayer which is based on the original Quake III Arena source code with the separation 

between the modules. Another executable provides the single player experience and bypasses the 

separation which makes it easier to directly visualize things from the game code.  

To present a smoothly changing environment the Quake III Arena client interpolates between, or 

extrapolates from the last two snapshots. Such extrapolation can produce unrealistic results 

unless the physics and game rules are taken into account. For instance, extrapolation of 

trajectories without collision detection can cause objects to move into or through other objects or 

walls. Proper extrapolation introduces additional complexity and more code at the client that 

needs to be in sync with the code that runs at the server.  

In a complex game engine interpolation can be difficult because the state of an entity can be 

complex and proper interpolation is often expensive or ill-defined. For instance, a skeletal 

animation system may be used for animating characters, and arbitrary bone modifications may be 

applied to achieve specific effects. First of all the complete skeleton would need to be sent over 
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the network for proper interpolation. Furthermore expensive spherical linear interpolation 

between quaternions would be required to interpolate between the skeletons from the last two 

snapshots.  

In Quake III Arena a snapshot for a client only contains the state of those entities that are in the 

Potentially Visible Set (PVS) [34] of the client. Furthermore, the entity states in a snapshot can 

only be delta compressed relative to the entity states from a previous snapshot. As a result the 

state of entities that continuously leave and enter the PVS cannot be delta compressed. Whenever 

an entity enters the PVS, it's state has to be sent in full with the next snapshot. In an environment 

with a lot of entities that need to be synchronized over the network this can cause a lot of 

bandwidth to be consumed.  

Most network traffic in Quake III Arena is generated by sending unreliable messages. There is 

typically no point in resending the same snapshots if they are dropped because the information 

they contain becomes out of date very quickly. However, reliable messages can also be used in 

Quake III Arena for specific, usually infrequent, updates. The only way to send reliable 

messages in Quake III Arena is through the use of server commands. These server commands are 

string based and inefficient. However, it can be very convenient to synchronize a small part of 

the game state through reliable messages. Using string based server commands like in Quake III 

Arena introduces considerable overhead.  

To write entity states to snapshots, Quake III Arena uses a fixed entity state structure with fixed 

data fields. The advantage is that all entities have the same structure and a single optimized 

routine can be used for the delta compression. On the other hand different types of entities may 

maintain rather different state variables and developers often ended up re-using entity state 

structure fields for different purposes on different entities. In a game with many different entities 

that maintain completely different state variables it quickly becomes impractical to use a fixed 

entity state structure for all entities.  

The DOOM III network architecture presented here is similar to the network model of Quake III 

Arena but tries to address several of its problems.  

1.2 Layout  

Section 2 provides an overview of the DOOM III network architecture. Section 3 describes the 

data communicated between the client and server. Section 4 describes all forms of compression 

that are used to significantly reduce the amount of data that needs to be communicated over the 

network. Section 5 shows some of the implementation details. The results are presented in 

section 6 and several conclusions are drawn in section 7. Suggestions for future work are 

presented in section 8.  
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2. Network Architecture  

Just like Quake III Arena, the network architecture presented here is based on the client-server 

model. The server writes snapshots of the game state and sends these to a client. A snapshot for a 

client contains the compressed state of all entities that are currently in the Potentially Visible Set 

(PVS) [34] of the client. Each client samples input (from keyboard, mouse etc.) and sends the 

player's intentions to the server. Figure 3 shows an overview of the client-server architecture.  

 

Fig. 3. Overview of client-server architecture. 

Except for player input everything in a first person shooter is deterministic. Even random 

number generators are pseudo random and always produce the same sequence of "random" 

numbers based on an initial value. Furthermore the DOOM III game state is always updated at a 

fixed 60 frames per second independent from the speed of the computer. As such the engine 

always produces the same results based on the same player input. It makes sense to use this 

determinism to replicate information at the client. To present a smoothly changing environment 

the Quake III Arena client interpolates between, or extrapolates from the last two snapshots, and 

client side prediction of the player movement is used to improve the perceived responsiveness. 

The system presented here uses prediction on all entities in the PVS of the client to both improve 

the responsiveness and to present a smoothly changing environment. This includes prediction of 

the player movement because the avatar controlled by the player is also an entity in the PVS of 

the client.  

The server progresses the game without waiting for input from players. The server duplicates old 

player input if no new input has arrived in time to process the next game frame. The client tries 

to make sure the server always has new input to advance the game state at the server. As such the 

time at the client is ahead of the server time. The client runs just far enough ahead such that input 

from the player can be processed immediately at the client and can be sent over the network to 

the server where it arrives before the server needs to process the input to advance the game. 

Figure 4 shows a timeline with the server time, the client time, and the time of snapshots that 

arrive at the client.  
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Fig. 4. Client-server timeline. 

Ping times may fluctuate on the Internet. For this reason a client does not just run far enough 

ahead of the server such that input arrives in time at the server based on the current or average 

latency. The client runs a little further ahead such that input arrives in time even if there is some 

fluctuation in the latency of network messages sent to the server.  

The client is able to run ahead of the server by using prediction to advance the state of entities. 

The server sends snapshots to the client at a rate between 10 and 20 Hz. While no new snapshot 

has arrived the client predicts the state of entities on a frame to frame basis. Upon receiving a 

snapshot the client overwrites it's entity states with the entity states from the snapshot. A 

snapshot the client receives is from at least a full ping time in the past relative to the current time 

at the client. As a result the client temporarily moves back in time when it processes the 

snapshot. The client then has to quickly re-predict ahead from this state up to the current client 

time, from where the client can continue the prediction on a frame to frame basis. Figure 5 shows 

the prediction at the client.  

 

Fig. 5. Prediction at the client with a snapshot rate at 20Hz and a ping of around 80 milliseconds. 
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As stated above everything in a first person shooter is deterministic except for player input. 

Fortunately the player movement as a result of the input is predictable to a degree. The game 

advances at a fixed 60 frames per second and input is sampled at the same frequency. Players 

typically do not tap keys 60 times per second and do not change their movement direction every 

frame. As a result using the same input for several game frames is usually not too far off from 

what really happened. Furthermore the server sends the most recent input from other players 

with snapshots. This input from other players is used by a client to accurately predict other 

players. The input is processed by a client in the same way the server does, and the same player 

physics is used to move the predicted players through the virtual environment.  

Unlike Quake III Arena there is no time difference between what the player sees on screen and 

the player movement through the environment. Therefore the player does not need to lead targets 

because the system does the prediction for the player. The server sends the most recent input 

from other players with snapshots and the same game code (including physics) is used at both the 

client and the server to move players through the environment. Therefore the system can 

typically do better prediction of other players than the player is able to do by leading targets. The 

Quake III Arena bots show that computer algorithms can be fairly good at predicting player 

movement. Even when using weapons that fire slow moving projectiles the bots at a higher skill 

level show exceptional accuracy when aiming. The bots in Quake III Arena use an 

approximation of the player physics with collision detection to predict where players will be 

some time in the future.  

General prediction of all entities in the client PVS works well because the same game code and 

algorithms (including physics) are used at both the server and the client to advance the state of 

entities. This is also known as dead reckoning [9]. Unlike Quake III Arena, the game code, 

which runs at the server, and the client visualization and prediction code are not in separate 

modules. The same module is used both at the server to advance the state of entities, and is also 

used at the client to visualize and predict the state of entities. The server runs the game code just 

like in single player mode without modifications. The client runs the same game code to advance 

the state of entities for prediction. Using a single module allows development of a single player 

game or new features without being forced to make things work over a network.  
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3. Client-Server Communication  

The User Datagram Protocol (UDP) [32] is used to send messages over a network or the Internet. 

Because of the highly interactive and fast-paced nature of first person shooter games there is no 

point in using a reliable protocol with guaranteed message delivery like the Transmission 

Control Protocol (TCP) [33]. The server continuously sends the states of entities over the 

network. Resending the same states when network messages are dropped is pointless because by 

the time such messages do arrive (after resending them), the entity states they contain are already 

out of date. With UDP, messages may arrive out-of-order with duplicates. Furthermore, 

messages may not arrive at all but the content of messages that do arrive is never corrupted. To 

deal with the characteristics of a network using UPD messages, the network architecture 

presented here implements several layers on top of UDP as shown in figure 6.  

 

Fig. 6. Network layers. 

The message channel implements one connection, either from a client to the server or the other 

way around, and provides functionality for sending both unreliable and reliable messages. These 

messages are guaranteed to arrive in-order, without duplicates and their content is never 

corrupted. However, the unreliable messages may be dropped while the reliable messages are 

guaranteed to always arrive. Most data like snapshots and player input is sent over the network 

with unreliable messages. Reliable messages are only used for certain acknowledgements and 

small critical updates that need to be processed before any unreliable updates. The message 

channel is designed to handle reliable messages that are very small compared to unreliable 

messages. The presented network system produces a continuous stream of unreliable messages. 

Snapshots are sent at 10 to 20 Hz from the server to the client, and player input is sent more 

frequently from the client to the server. Because there is a continuous stream of unreliable traffic, 

the reliable messages simply piggy back on unreliable messages. The message channel uses a 

brute force approach to send reliable messages. Reliable messages are buffered and each reliable 

message is sent with every unreliable message until the reliable message has been acknowledged 

by the receiver. As such the message channel guarantees that a reliable message arrives before 

the first next unreliable messages comes through.  

This brute force approach to reliable messages works well. The client does not send reliable 

messages frequently. When a reliable message is sent, the message is usually very small so the 
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brute force approach is not an issue there. Furthermore, the client sends unreliable messages at a 

rate 3 to 4 times faster than the server sends unreliable messages. As such, there is no need for a 

time-out on a reliable message from the server because if a reliable is not acknowledged by any 

of the next couple of client messages, the message can be considered dropped and should be 

resent anyway.  

The message channel is "rate controlled" and can notify higher layers when the network 

connection becomes satisfied and additional traffic would exceed the available bandwidth. The 

message channel also breaks up large messages into packets if they would otherwise cause 

fragmentation. Furthermore, the message channel keeps track of an unique identification for the 

computer at the other end of the connection. The Internet Protocol (IP) port number cannot be 

used as an unique identification because some routers may periodically change the IP port [6].  

The message channel uses compression to reduce the size of all messages. Furthermore, the bit 

message layer implements two forms of compression that are required to significantly reduce the 

amount of data that needs to be communicated over the network. Before going into the details of 

compression, the next section describes the data being sent over the network.  

3.1 Unreliable Message Headers  

Snapshots and player input are sent over the network with unreliable messages. All unreliable 

messages from the server to the client and vice versa have a header. Figure 7 shows the header 

for unreliable messages from the server to the client. Figure 8 shows the header for unreliable 

messages from the client to the server.  

 

 

 

Fig. 7. Unreliable messages header from 

server.  

Fig. 8. Unreliable messages header from 

client. 

The server uses an unique identification number for every game being played which usually 

happens on a per map basis. This identification number is used to make sure the clients use the 

right settings, and have the right map loaded for the current game. The server sends this game 

identification number with every unreliable message. The server also sends the type of the 

unreliable message.  

The client also sends a header with every unreliable message. This header stores the sequence 

number of the last received server messages and the game identification number. The server uses 

the game identification number sent by the client to check whether or not the client is in the right 

game. If the client is not in the right game the server sends an unreliable message to the client 

with instructions on which map to load and additional settings. Unreliable messages are not 

acknowledged, but the client sends the sequence number of the last received server messages to 
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allow the server to verify whether the client received the unreliable message with instructions to 

load the right game. The client also sends an acknowledgement for the last received snapshot 

with every unreliable message. This acknowledgement is used for the delta compression 

described in section 4. Just like for unreliable messages from the server the client sends the type 

of the unreliable messages.  

3.2 Snapshots  

The most important traffic from the server to the client is in the form of snapshots. Such 

snapshots contain a collection of data but most importantly they communicate the states of 

entities to a client. Figure 9 shows a snapshot and figure 10 shows how a snapshot goes through 

the network layers.  

 

 

 

Fig. 9. Snapshot Message. 
 

Fig. 10. Server to client snapshot pipeline. 

Every snapshot message has a sequence number which allows the client to acknowledge the 

snapshot for delta compression as described in section 4. Next the snapshot message stores the 

game frame number and the game time when the snapshot was made. The snapshot also tells the 

client how many user commands were duplicated since the last snapshot. If the client does not 

predict far enough ahead and the client's user commands do not arrive in time the server will 

duplicate previous user commands. The client should avoid this. The number of duplicated user 

commands is not used directly but can be displayed during development. The server also tells the 

client how far ahead of time the user commands from the client arrive. This time should ideally 

be close to zero, but always positive, and the client can adjust the prediction time accordingly.  

The most important data in a snapshot is a set of delta compressed states of entities that are in the 

PVS of the client. Unlike Quake III Arena there is no fixed entity state where structure fields 

may need to be reused for different purposes on different entities. The network system presented 

here uses a bit message to store an entity state. Entities can write any variables that need to be 

synchronized to this state. It is even possible to change the structure of the state during game 

play but this does decrease the performance of the delta compression.  
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Entities that did not change are not stored in the snapshot. However, the client still needs to 

know which entities are considered in the PVS by the server. For this reason a bit string is stored 

which tells which entities are considered in the PVS.  

Aside from the entity states there is also one delta compressed state which is not tied to the PVS 

and always stored in the snapshot. This state is used to communicate general game and player 

state information. Furthermore a snapshot stores the most recent user commands from other 

players that are in the PVS of the client. These user commands are used by the client to improve 

the prediction of other players.  

3.3 User Commands  

The most important traffic from the client to the server is in the form of user commands. Such 

user commands contain the intentions of the player. Figure 11 shows an user command message 

and figure 12 shows how a user command message goes through the network layers.  

 

 

 

Fig. 11. User Command Message. 
 

Fig. 12. Client to server user command pipeline. 

With a user command message the client sends a time which represents how far the client 

predicts ahead relative to the server. This time is not directly used by the server but can be 

displayed at the server during development. A user command message may contain multiple user 

commands. The message stores the game frame number of the first user command and the 

number of user commands. The first user command is for the given frame number, the next for 

the following frame etc. The message then stores the actual user commands. These user 

commands are delta compressed in sequence. The second user command is delta compressed 

relative to the first, the third relative to the second etc.  
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4. Compression  

Snapshots only contain states of entities in the PVS of a client and snapshots are sent at a 

frequency between 10 an 20 Hz. The snapshots still consume a lot of bandwidth without any 

form of compression. Several forms of compression are required to significantly reduce the 

amount of traffic. 

4.1 Bit Packing  

Bit packing is a form of compression where superfluous bits are removed from variables before 

sending them over the network [3]. For instance, the health of a player may be stored in memory 

as a 32-bit integer for computational efficiency. However, the health usually ranges from 0 to 

100 and only 7 bits are required to store a health value. There is no need to send the remaining 

25 bits over the network. By sending a health value over the network with just 7 bits no 

information is lost while the amount traffic is reduced with more than 75%.  

Variables can also be quantized to reduce the amount of traffic that is generated. For instance, 

floating point values can be transmitted in a format which uses less bits by specifying the number 

of bits used for the mantissa and exponent. In this case information is lost because the floating 

point values are communicated in a format with less precision. However, for many variables the 

reduced precision is not a problem. The positions of objects are sent over the network in full 

precision because otherwise collisions may be missed during prediction. However, the velocities 

of objects can usually be transmitted as 16-bit floats.  

Angles in degrees are good candidates for quantization. The value of a floating point angle 

ranges from 0 to 360 and the value is best represented with the same precision across the whole 

range. As such an angle can be scaled to the range 0 to 65535 and reduced to a 16 bit integer. 

When the value is unpacked it is scaled back to a floating point number in the range 0 to 360.  

Sometimes it is also convenient to send an approximate direction over the network. For instance, 

the initial direction for a particle effect does need to be communicated with full precision. A 

normalized direction vector can usually be approximated with very few bits. For instance, just 3 

bits for each coordinate axis.  

4.2 Delta Compression  

In a game like DOOM III there are many entities with many state variables in any given scene. 

Bit packing alone is not enough to bring down the size of snapshots. All state variables can 

change but typically only a subset of the variables changes over time. As such it makes sense to 

only write state variable changes to snapshots. For this reason the network system presented here 

uses delta compression. Bit packing is used before delta compression because only the changes 

to the quantized variables need to be transmitted.  

Two kinds of delta compression are supported. First of all variables can be delta compressed 

relative to an initial or common value. If a variable has a specific value for most of its life time 

the server and client can assume this value until it changes. Variables can also be delta 
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compressed relative to a previous value which is known to be replicated at the receiver. If the 

sender knows the current value of a variable is already replicated at the receiver, the value does 

not have to be transmitted again. The delta compression uses one bit to tell whether or not a 

variable changed. If the value of a variable changed a single bit, set to 1, is written followed by 

the bit packed variable value. If the value of a variable did not change only a single bit, set to 0, 

is written.  

In Quake III Arena entities can only be delta compressed relative to a previous snapshot. The 

delta compression presented here works relative to a common base with entity states maintained 

by both the server and the client. This common base contains states for all entities in the game. 

Entities are delta compressed relative to this common state which allows proper delta 

compression even when entities continuously leave and enter the PVS. After creating and 

sending a snapshot the server buffers the snapshot. The client also keeps track of the recently 

received snapshots. With each user command message the clients sends an acknowledgement for 

the last received snapshot. User commands are sent at a higher frequency than snapshots so even 

with packet loss most snapshots are acknowledged. When the server receives an 

acknowledgement for a snapshot it applies the snapshot to its common state for that client. The 

server then also sends a reliable message to the client telling the client to apply the same 

snapshot to it's common state. Reliable messages are guaranteed to arrive before any new 

unreliable data, so the acknowledged snapshot will be applied at the client before any new 

snapshots are processed. This way both the server and client maintain a synchronized common 

base with entity states that can be used for delta compression.  

Entities that have not change from the common state are not written to a snapshot at all to save 

even more bandwidth. However, a client still needs to know which entities are considered in the 

PVS by the server because the client should only render those entities on screen. Entities are 

typically numbered and the server could write the numbers of all entities that are in the PVS to 

the snapshot. In a game like DOOM III there can be many entities in the PVS in any given scene 

and sending all those numbers would significantly increase the size of snapshots. Instead of 

sending the numbers of the entities, a bit string can be written to a snapshot. This bit string has a 

bit for each entity where bit offset denotes the entity number. A bit is set to 1 if the entity is in 

the PVS of the client and a bit is set to 0 if it is not. With a maximum of 4096 entities in the 

game this requires 512 bytes. However, as a player moves through the environment typically 

only a few entities enter and/or leave the PVS. As such this bit string can be delta compressed in 

fixed chunks of for instance 32 bits. A 32 bit chunk is then only sent over the network if one of 

the entities from that chunk entered or left the PVS. If no entities entered or left the PVS this 

results in just 16 bytes being written to the snapshot.  

4.3 Message Compression  

The message channel compresses all reliable and unreliable messages. The delta compressed bit 

packed data is not a stream of fixed length words. The delta compression introduces single bits 

and the bit packed variables can use an arbitrary number of bits. As a result regular entropy 

encoding is difficult because entropy encoders typically assume a word length of a fixed number 

of bits.  



18 

 

The delta compression writes out a single zero bit for any variable that did not change. Because 

only few variables change over time the delta compression introduces a lot of sequences of zero 

bits. For this reason 3-bit word length zero based run-length compression is used. The 

compressor reads 3 bits at a time and if the bits are not all zero the same bits are written out 

without changes. If the 3 bits are all zero the compressor keeps reading words of 3 bits at a time 

until they are no longer all zero. The compressor then writes out 3 zero bits followed by 3 bits 

that represent the number of times 3 zero bits were read in succession. Using a 3-bit word length 

results in a maximum compression ratio of 4:1. A different number of bits than 3 could be used 

for the word length but for the DOOM III entities using 3 bits results in the best compression 

ratios in practice.  

The compression ratios for snapshots can generally be improved by writing entity class variables 

to a snapshot in order of the frequency at which they change. This way the variables that change 

infrequently are grouped together which results in long sequences of zero bits.  

5. Implementation  

Each entity class implements a WriteToSnapshot and ReadFromSnapshot member function. 

These member functions write and read entity class variables that need to be synchronized from 

the server to the client.  

Write and read methods are used because this allows specific conversions to be implemented on 

a per entity basis. For instance, a rotation matrix can first be converted to a quaternion before 

writing the orientation to the snapshot. When the snapshot is read by the client the quaternion 

can be converted back to a rotation matrix. Certain state variables may also be derived from 

other state variables. Such derived state variables do not need to be synchronized and can be 

derived in the ReadFromSnapshot method.  

Instead of read and write methods, tables could be used with entity class variables that need to be 

synchronized. Conversions and derived variables would need to be specified in these tables. A 

table would then be used by generalized routines to write and read the state variables. This would 

force these routines to know about conversions or derived variables that may be very specific to 

just one type of entity. Such a coupling is typically undesirable. The system presented here uses 

write and read methods for maximum localized flexibility.  

class idMyEntity : public idEntity { 

public: 

 

    virtual void    WriteToSnapshot( idBitMsgDelta &msg ) const; 

    virtual void    ReadFromSnapshot( idBitMsgDelta &msg ); 

    virtual bool    ClientReceiveEvent( int event, int time, const idBitMsg &msg ); 

 

    enum { 

        EVENT_FIRST = idEntity::EVENT_MAXEVENTS, 

        EVENT_SECOND 

    }; 

 

private: 

    int             health; 

} 
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void idMyEntity::WriteToSnapshot( idBitMsgDelta &msg ) const { 

    msg.WriteBits( health, 7 ); 

} 

 
void idMyEntity::ReadFromSnapshot( idBitMsgDelta &msg ) { 

    msg.ReadBits( health, 7 ); 

} 

The idBitMsgDelta class is initialized with an entity state from the common base. The class 

writes or reads a bit packed and delta compressed message. The class also writes out a new entity 

state which can be applied to the common state once a snapshot is acknowledged by both the 

client and the server.  

The server can also send reliable events to update entities or to initiate specific effects. The 

server can send an event to clients for a specific entity by calling a ServerSendEvent method on 

the entity. These entity events are not affected by the PVS of a client and will always be sent 

over the network.  

void idEntity::ServerSendEvent( int event, const idBitMsg *msg, bool saveEvent ) const; 

The 'event' parameter specifies the type of event. Each entity can handle an arbitrary number of 

different events. The event parameters are written to an idBitMsg which allows the parameters to 

be bit packed to save bandwidth.  

If the 'saveEvent' option is set then the event is saved for clients that connect late. Saved events 

are buffered and also sent to any client that connects late so all clients always receive the events 

no matter what time they join the game. Such saved events can be used for entities that exist 

throughout the whole game and do not change continuously but go through a well defined 

sequence of transitions. Whenever a transition takes place an event is sent to the client to execute 

the particular transition.  

To handle such events each entity class has a method which is called whenever an event arrives 

at the client for an object of that entity class. 

bool idMyEntity::ClientReceiveEvent( int event, int time, const idBitMsg &msg ) { 

    switch( event ) { 

        case EVENT_FIRST: { 

            // read parameters from 'msg' and handle event 

            return true; 

        } 

        case EVENT_SECOND: { 

            // read parameters from 'msg' and handle event 

            return true; 

        } 

        default: { 

            return idEntity::ClientReceiveEvent( event, time, msg ); 

        } 

    } 

    return false; 

} 

Even though the events are reliable the entity can still choose to ignore the event if it is from too 

far back in the past. In DOOM III there is no functionality implemented to send unreliable 
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events. However, implementing such events can easily be done in the game code by writing the 

events just once to snapshots. Such unreliable events can also be bound to the PVS of the client 

if desired.  

In Quake III Arena implementing and tweaking an entity that works over the network sometimes 

requires changing almost a dozen source code files. With the network architecture presented here 

there is no separation in modules. As such the implementation of everything necessary to 

simulate and visualize an entity is localized and typically involves no more than two source code 

files.  

6. Results and Discussion  

In DOOM III the bit packing typically reduces the amount of traffic with 10 up to 15%. The 

reason for this relatively small reduction is that a lot of positions and orientations of entities are 

synchronized as full 32-bit floating point variables without any reduction.  

In theory the maximum compression ratio of plain delta compression is 32:1 because the 

maximum size of variables used in DOOM III is 32 bits and the delta compression writes out a 

single zero bit for each variable that did not change since a previous update. In practice the delta 

compression does much better and reduces the traffic with 90 up to 100%. The reason for this 

large reduction is that entities in the environment that do not change at all are omitted completely 

from the network stream and no zero bits are transmitted. If entities that do not change at all 

would still be synchronized the delta compression would turn updates for such entities into 

sequences of only zero bits and the reduction in network traffic would only be 80 to 90%.  

The 3-bit word length zero-based run-length compression has a theoretical maximum 

compression ratio of 4:1. In practice the run-length compression reduces the network traffic with 

15% up to 50%.  

Unlike with Quake III Arena, developers are not forced to make all entities network capable. The 

presented network architecture allows a single player experience to be developed independently, 

without having to worry about networking. This is generally a big advantage. However, entities 

developed for a single player experience may not be suitable or optimized for networking. This 

may result in a fair amount of work when a developer tries to build a multiplayer experience 

upon a single player game.  

The bit packing is used to reduce the amount of entity state information being written to 

snapshots. The number of bits used to synchronize integer variables can be decreased and even 

the number of bits used for the mantissa and exponent of floating point values can be specified. 

However, reducing the entity states on a bit level is not trivial and requires thorough knowledge 

of the information being synchronized. For instance, reducing the number of bits used to 

synchronize physics positions is usually a bad idea because predicted collisions may be missed if 

positions are not synchronized with enough precision.  

The DOOM III engine as a whole is more flexible than the Quake III Arena engine. There are 

more different entities that can operate and change in different ways. To cope with this increased 
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flexibility the DOOM III network system is also more flexible than the Quake III Arena 

networking. The additional flexibility comes with more choices to be made and as such it can 

take some time to get familiar with all the different options. Synchronizing class variables on a 

per entity basis also requires more programming than writing code to synchronize a single fixed 

entity state. However, the additional flexibility is required because entities are versatile and may 

have many different state variables that do not all fit well in a fixed state structure.  

While no new snapshot has arrived, the prediction at the client is cheaper than advancing the 

game at the server because only entities in the PVS of the client are predicted. However, 

whenever a new snapshot arrives the states of entities in the PVS of a client are overwritten with 

the states from the snapshot. The client then has to re-predict up to the current client time 

because the snapshot contains entity states from the past. The snapshots are from at least a full 

ping time in the past, and the client may need to re-predict quite a few game frames in one go. 

Even though only entities in the PVS of the client are predicted, this prediction can be expensive 

at times. Furthermore, the prediction becomes more expensive as the latency increases. 

Generally the PVS is limited enough such that the prediction does not cause any slowdowns. 

However, the multi-frame prediction happens whenever a new snapshot arrives, and snapshots 

typically arrive at a lower frequency than the client renders images on screen. As a result more 

processing power is required every few rendered frames which may degrade the display of 

smooth motion through the virtual environment.  

7. Conclusion  

Any network architecture implements a trade between: consistency, responsiveness, bandwidth 

and latency requirements. Finding the right balance depends on the type of game and the network 

environment. 

The network architecture presented here overcomes several of the problems of the network 

architecture used in Quake III Arena. There is no server and client game separation which makes 

development easier, and a single player game can be implemented without having to worry about 

networking. There is no time difference between the player movement through the environment 

and what the player sees on screen. Entities are not synchronized through a fixed entity state 

structure but instead arbitrary entity state variables can be synchronized over the network. The 

network system is also generally more efficient than the Quake III network system. 

Even though the efficiency of the network architecture improved, multiplayer games in DOOM 

III usually generate more traffic than in Quake III Arena. In DOOM III there are simply many 

more entities with many state variables in any given scene and synchronizing all those variables 

requires more bandwidth. For instance, while in Quake III Arena the lighting was baked into the 

levels, the lighting in DOOM III is fully dynamic and every single light in the environment can 

be changed at run-time and may therefore have to be synchronized over the network. 
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8. Future Work  

Snapshots are delta compressed relative to a common base with entity states maintained by both 

the server and the client. When a map is first loaded the common base is empty. As a result the 

full state of any entity that enters the PVS of a client for the first time is sent over the network. 

However, a lot of entities are loaded from a map file and they either do not change at all, or only 

part of their state changes during game play. The common base with entity states could be 

initialized with the states of entities from right after a map is loaded. These states are always the 

same and as such the common base at the client and server stay synchronized when initialized 

with these states.  

In DOOM III reliable messages can be used to transmit events and small, but significant updates 

of entities. However, some small updates could also be sent over the network with unreliable 

messages instead. Such unreliable messages could be used for events and updates that are only 

noticeable over a short period of time and do not disrupt game play if they never arrive at a 

client. For instance, bullet impact effects on walls could be communicated with unreliable 

messages. These effects disappear quickly and if some of these effects never arrive at a client it 

does not disrupt game play. Support for unreliable messages is easy to implement. These 

messages can be buffered in the game code at the server. All such buffered unreliable messages 

are then written to the first next snapshot and the buffer is cleared. If the snapshot message is 

dropped, the unreliable messages will never arrive at the client. However, packet loss is minimal 

on today's networks and the Internet, so most snapshot and unreliable messages will arrive.  

All entities in the game are by default synchronized over the network when they enter the PVS of 

a client. For certain special effects it may be convenient to support entities that only live at the 

client. The server does not know about such client side entities and these entities are never 

synchronized over the network. The client can use these entities to display additional changes 

and events in the environment. Such client side entities can be derived from other entities that are 

synchronized over the network. These entities can also be created from additional reliable or 

unreliable messages sent from the server.  

Not only the delta compressed states of entities that are in the client PVS are written to 

snapshots. There is also one delta compressed state synchronized over the network which is not 

tied to visibility. This state is used to communicate general game information and player state 

information over the network. Instead of using a single state for this purpose, it may be 

convenient to use multiple states for different purposes that are not tied to visibility. Using 

multiple such states allows individual states to be omitted if they are not relevant at certain points 

in time or if they are completely delta compressed away.  

The client side prediction is implemented in the game code. As such developers can easily 

disable prediction on certain entities or specific aspects of some entities. For instance, the 

prediction of the position of opponents could be disabled and instead interpolation could be used. 

This allows a "lag compensation" approach [11] to be implemented without requiring changes to 

the network architecture. It is also possible to stop updating certain entities over the network at 

some point where the client side prediction completely takes over the rest of the simulation. For 

instance, the server could stop updating an enemy that dies and turns into a ragdoll. These 
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ragdolls are mostly used to present a realistic death animation and as such have no consequences 

for the actual game play. No longer updating such entities can save a significant amount of 

bandwidth.  

Instead of a single snapshot stream the server can also send multiple snapshots to clients at 

different frequencies. This allows different entities to be updated at different frequencies. For 

instance, entities that are in the PVS but are very far away could be updated less frequently 

because state changes of such entities are less noticeable to a player. Sending updates less 

frequently obviously saves bandwidth. Certain entities can also be written to every other or every 

third etc. snapshot to save bandwidth.  

When a new snapshot arrives the states of entities at a client are overwritten with the states from 

the snapshot and the client has to quickly re-predict up to the current time at the client. In 

DOOM III this re-prediction is cheap enough to not cause any problems. However, if this re-

prediction turns out to be expensive at times the entity states can be advanced by taking larger 

steps through time. Instead of advancing the states one frame at a time at 60Hz, multiple frames 

could be merged to step through time more quickly. Obviously this will affect the accuracy of 

the prediction. However, taking larger steps through time can be done on a per entity basis and, 

for instance, only for entities where any prediction errors are not noticeable.  
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