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Abstract 
 

This technical note describes some of the performance issues 
encountered during the development of DOOM 3 BFG.  

 

1. Introduction 
 

DOOM 3 BFG Edition is a remastered version of DOOM 3, the third installment of the genre defining franchise. 

This remastered version extends and enhances the full experience of the original DOOM 3, and makes the 

game available on all current major platforms (PC, Xbox 360, PlayStation 3) with a silky smooth frame rate and 

highly responsive controls. 

 

While it may seem that DOOM 3 BFG is a fairly straight forward port of the original game, significant effort went 

into re-optimizing the game for current hardware. At the time of release (2004), the original DOOM 3 displayed 

about 20 frames per second at a resolution of 640x480 with medium to low quality settings on the minimum-

specification PC. The goal for DOOM 3 BFG was to run at a solid 60 frames per second at a resolution of at 

least 1280x720 with the highest quality settings on all current (2012) hardware. That is 3 times the number of 

rendered pixels that are updated 3 times more frequently. Of course 1280x720 is not even considered a high 

resolution anymore. Everyone wants to run at a higher resolution with some form of MSAA which easily adds 

another couple of factors to the equation. In other words, the goal for DOOM 3 BFG was to run at least 10 

times faster on current hardware. Obviously computer hardware improved significantly since the release of the 

original DOOM 3. However, a factor of 10 or more performance improvement turned out to not come for free 

with 8 years of improvements in computer hardware (8 years on the PC while the Xbox 360 and PlayStation 3 

benefit from only a couple of years of hardware improvements). 

 

Central Processing Units (CPUs) have become a lot more efficient at processing instructions from a single 

thread of execution. In more technical terms, the number of clock cycles per instruction (CPI) has gone down. 

However, the operating frequency of CPUs has not gone up much, if at all. In other words, while the number of 

instructions that can be executed per clock cycle has gone up, the number of clock cycles per second has not 

increased. Instead most CPUs now implement multiple cores that can execute code in parallel and on various 

processors each core can simultaneously advance multiple threads of execution. This translates into a large 

potential performance improvement, but only if software is written to take advantage of multiple cores by 

implementing multiple threads of execution that can run in parallel. Unfortunately, the original DOOM 3 [10] is 

predominantly single threaded and all the heavy lifting is done on a single thread of execution. 

 

The performance of Graphics Processing Units (GPUs) has increased dramatically. GPUs have always been 

designed to be highly parallel machines and over time there has been a significant increase in the number of 

threads of execution. GPUs are complex machines with various hard-wired high performance components.  

Interestingly, some of these components were just coming online at the time of the original DOOM 3 release. 
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The coarse Z-Cull / Hierarchical-Z is one such component which has the potential to dramatically improve 

rendering performance. While DOOM 3 BFG benefits significantly from this component, taking full advantage 

of the coarse Z-Cull / Hierarchical-Z turns out to be an interesting challenge when rendering stencil shadow 

volumes, one of the important rendering features of DOOM 3 [1, 2]. 

 

While the potential CPU and GPU performance has improved significantly over the years, the performance of 

random access memory (RAM) has not improved at the same rate. In particular, memory bandwidth and 

memory latency have not improved as much. As a result the number of instructions that can be executed per 

memory access has increased. This change presents another set of challenges and forced many of the 

optimizations from the original DOOM 3 [3, 4, 5, 6, 7, 8, 9] to be redone with this new balance between 

compute and memory access in mind. 

2. Memory Constraints 
 

In some of the worst case scenes, DOOM 3 BFG suffers from cache thrashing on PC systems with a modest 

amount of cache. In particular, there can be a bad interaction between the renderer backend/driver and 

dynamic shadow volume construction code (all running in different threads). This really is not anything new 

because cache thrashing and memory bandwidth were a problem in the original DOOM 3 as well. Even though 

significant improvements were made for DOOM 3 BFG, the game now also performs significantly more CPU 

work while still touching and generating a lot of data, partly to offload the GPU and to avoid Z-Cull / Hi-Z issues 

on some graphics hardware. 

 

Unlike the original DOOM 3, nothing is done lazily anymore (except for generating animation frames, no more 

flags and tests like: "calculate this right now if it has not been calculated yet"). All the high performance CPU 

work now follows the streaming programming model. For dynamic shadow volumes the engine now culls 

triangles to the light volume, both to reduce the number of shadow volume triangles and to reduce the number 

of triangles that are redrawn for each light pass. The engine now also performs a precise test to determine 

whether the view intersects or is inside a shadow volume. This precise test is important to significantly reduce 

the number of cases where shadow volumes have to be rendered with Z-fail [1] because Z-fail rendering is 

significantly slower on a various graphics hardware (in particular at high resolutions). For this precise inside 

test a line-versus-expanded-triangle intersection test is performed for every single shadow volume near cap 

triangle where the line goes from the view origin to the light origin. The shadow volume is also transformed into 

clip space and the polygons are clipped to the view in homogeneous space to calculate very tight depth 

bounds. In particular in the cases where shadow volumes do have to be rendered with Z-fail, the depth bounds 

are used to get more Z-Cull / Hi-Z benefit (at least on the hardware that supports the depth bounds test). 

 

Skinning for rendering is now done on the GPU for both the visible meshes and shadow volumes. Unlike the 

original DOOM 3, all animated vertices are now in static GPU buffers and vertices are never copied to GPU 

memory at run-time. However, a lot of source data is used and a lot of triangle indices are generated on the 

CPU for both shadow volumes and to be able to render just those triangles that are inside a light volume. All 

indices are written to a single mapped index buffer using the _mm_stream_si128() intrinsic. To generate these 

indices and to perform a precise inside test, the code pulls in a lot of source data (whole triangle meshes in 

CPU memory). 
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In other words, the game crunches through, and generates a lot of data on the CPU. For instance, during the 

Mars City 1 intro sequence, the game may go up to using the following amounts of memory per frame, just for 

shadow volume construction/setup and light triangle culling: 

 

 6.0 MB worth of input data for shadow volume construction/setup and light triangle culling. 

 2.5 MB worth of generated shadow volume and culled light triangle indices. 

 

Keep in mind that the game code and the graphics driver are running in parallel overlapped with the shadow 

volume construction/setup and light triangle culling. The game code and the graphics driver are typically very 

good at thrashing the CPU cache on their own without outside help. 

 

The following code was used to verify that the index buffer returned by the graphics driver lives on write-

combined memory, at least in the use cases in DOOM 3 BFG: 

 

bool IsWriteCombined( void * base ) { 
       MEMORY_BASIC_INFORMATION info; 
       SIZE_T size = VirtualQueryEx( GetCurrentProcess(), base, &info, sizeof( info ) ); 
       if ( size == 0 ) { 
              DWORD error = GetLastError(); 
              error = error; 
              return false; 
       } 
       bool isWriteCombined = ( ( info.AllocationProtect & PAGE_WRITECOMBINE ) != 0 ); 
       return isWriteCombined; 
} 
 
void * buffer = glMapBufferRange( GL_ARRAY_BUFFER_ARB, 0, GetAllocedSize(), 
                                  GL_MAP_WRITE_BIT | 
                                  GL_MAP_INVALIDATE_RANGE_BIT | 
                                  GL_MAP_UNSYNCHRONIZED_BIT ); 
 
assert( IsWriteCombined( buffer ) ); 

 

In other words, the game is not thrashing the cache when writing out shadow volume and culled light triangle 

indices. However, the source data for the shadow volume construction/setup and light triangle culling lives on 

CPU cacheable memory. Overlapped streaming through a small window (usually around 4kB) is used for all 

source data, for both shadow volume construction/setup and light triangle culling. Everything is optimized to 

perform contiguous streaming where as little memory is touched as possible and memory is read as few times 

as possible. 

 

In the cases where the source data is used once, and only once, during a game frame, large scale cache 

pollution can be avoided by using the _mm_clflush() intrinsic to immediately flush the small window of source 

data from the cache after it has been processed. Unfortunately, it is a bad idea to do this when the same 

source data is used multiple times during a game frame from different threads (for instance when a mesh 

interacts with multiple lights and multiple shadow volumes are constructed in parallel). It is a bad idea to flush 

the source data from the cache from one thread, while another thread may potentially be using the same 

source data at pretty much the same time. It is interesting how a shared cache between threads/cores is 

actually not helping performance in this case. 
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What this all comes down to is that even when using the streaming programming model on a high end x86 

CPU, it is hard to achieve similar throughput as the Cell processor. Of course the Cell SPUs are hard to 

program because all the code has to be optimized pretty much from the start. Both the code and data has to fit 

in 256 kB of memory and it is desirable for each of the programs (or jobs) plus associated data to fit in less 

than 128 kB of memory to allow overlapped input and output streaming. The Cell SPU is also SIMD only so it is 

desirable to write SIMD code from the start to reduce the size of the binary code because having the compiler 

map scalar code to SIMD introduces a reasonable amount of overhead. In other words, if the programmer 

hours are spent then it is possible to achieve some pretty impressive throughput (for what the Cell processor is 

anyway, it is not a GPU). 

 

On x86 there is the SSE4.1 intrinsic _mm_stream_load_si128(). This intrinsic loads data through "read 

combine" buffers instead of the cache. Unfortunately this intrinsic only works on write-combined memory. Once 

memory is set write-combined, all code better use this intrinsic otherwise all performance bets are off. 

Streaming loads through _mm_stream_load_si128() are predictive so it is possible to achieve very close to 

maximum theoretical bandwidth. In other words, the _mm_stream_load_si128() intrinsic provides a lot of what 

can be done with a DMA controller as long as the code does not require a gather / scatter operation which is 

something the DMA controller for a Cell SPU can actually do reasonably well. Aside from gather / scatter 

operations, for which an actual DMA controller is probably desired, it would be really nice if the 

_mm_stream_load_si128() intrinsic also worked on cacheable memory (just like _mm_stream_si128()). This 

would allow cacheable memory to be accessed both through the cache and the "read-combine" buffers. 

Obviously there is no coherency between cached reads/writes and "read-combined" reads but that is not a 

concern for data that is effectively read-only at run-time. Read-only run-time data is very common in many 

games. Think of collision detection data, sound occlusion data, render geometry construction and culling 

source data etc. Of course the SSE4.1 instruction is not available on all CPUs that are targeted by DOOM 3 

BFG so this is still only a solution for newer CPUs that actually support SSE4.1. 

 

Fortunately in DOOM 3 BFG most data that is written out to memory, is streamed to write-combined memory. 

However, it is worth noting that streaming out large amounts of data to cacheable memory requires double the 

bandwidth on x86/x64. If an entire cache line worth of data is going to be written to cacheable memory then it 

is wasteful to first fetch the cache line from memory into cache, only to completely overwrite the cache line 

afterwards. For this reason the Cell processor implements the 'dcbz' instruction. This instruction allocates a 

cache line associated with the given memory address. Instead of initializing the cache line with the contents 

from memory the cache line is set to all zeros. It would be useful to have a cache-line-clear instruction on 

x86/x64.  
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3. Compute vs. Memory 
 

Another interesting (but not too surprising) difference between the original DOOM 3 and DOOM 3 BFG is the 

shift from memory usage to compute. Whereas in the original DOOM 3 an animated mesh for a game 

character was only ever skinned once per frame, in DOOM 3 BFG an animated mesh for a game character 

may be skinned many times per frame, simply because it is faster. 

 

In the original DOOM 3 an animated mesh for a single instance of a game character was skinned only once 

per frame and the uniquely skinned version of the mesh was stored out to memory. The skinned copy in 

memory was then used to construct shadow volumes and it was also sent to the GPU to actually render the 

mesh (or shadow volumes). This all made sense 8 years ago when the balance between compute and memory 

bandwidth was somewhat different. 

 

In DOOM 3 BFG an animated mesh for a single instance of a game character may be skinned many times per 

frame. The simple observation is that the cost of skinning a mesh may be mostly hidden behind the cost of 

reading/streaming the "un-skinned" source mesh from memory. In other words, reading/streaming the "un-

skinned" source mesh from memory and skinning it in-place does not cost much more than reading/streaming 

an already skinned mesh from memory without performing any additional calculations. 

 

The big win comes from never having to write the skinned mesh back to memory and never having to 

send/copy it to the GPU. In addition, far less memory is being read because while the same "un-skinned" 

source mesh may be used by many instances of a game character, a fully skinned mesh is unique to a single 

instance of a game character. Reading less memory reduces memory bandwidth if data can remain in CPU 

caches. It may also result in less cache thrashing, in particular when performing a lot of work in parallel where 

all parallel threads (or tasks) use the same source data (as opposed to unique source data). 

 

To construct a shadow volume the source mesh is read, skinned in-place, followed by immediately calculating 

the facing triangles and silhouette edges. In DOOM 3 BFG a shadow volume is no more than a set of indices 

that reference a static "un-skinned" source mesh in GPU memory that is skinned on the GPU right before 

rasterization. As a result, an animating mesh for a single instance of a game character may be skinned many 

times per frame in DOOM 3 BFG. For instance, if an animating mesh interacts with 2 shadow casting lights 

(very common) then the mesh may be skinned 7 times per frame in DOOM 3 BFG. 

 

 2x CPU skinned to construct 2 shadow volumes 

 1x GPU skinned to render the depth pass 

 2x GPU skinned to render 2 shadow volumes 

 2x GPU skinned to render 2 light surfaces 

 

In other words, DOOM 3 BFG may, for a typical animated mesh, use 7 times the number of FLOPS compared 

to the original DOOM 3. However, DOOM 3 BFG runs noticeably faster on today's hardware. 

 

As an added bonus DOOM 3 BFG now maintains less state (no longer stores a skinned copy of a mesh per 

instance of a game character). The less state is maintained the easier it is to understand and reason about 

code and the less likely the code will have bugs. The stateless nature also allows a lot of code to run in parallel 

without contention over resources. All shadow volumes can now be constructed in parallel without the need for 

synchronization primitives like mutexes or critical sections. 
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4. Linked Data Structures 
 

The DOOM 3 BFG source code [11] includes several questionable templates for linked lists and hierarchical 

data structures such as 'idLinkList' and 'idQueue'. The implementation of these two classes is particularly poor, 

but in general there are problems with generic (templatized) classes for linked lists and hierarchical data 

structures. These generic classes tend to be bloated with redundancy and they are either intrusive or require a 

separate memory allocation per "linked object" and use a pointer to the "linked object". 

 

/* 
       A public member variable of this type is added to the class of the "linked object". 
       Not only is this class intrusive, the member variable also needs to be public. 
       To fetch the "linked object" the class wastes space for a pointer to the "linked object". 
       This class is also confusing because it is used both for a "link" and the "head" of the list. 
*/ 
template< class type > 
class idLinkList { 
       idLinkList * head; 
       idLinkList * next; 
       idLinkList * prev; 
       type * owner; 
}; 

 

If the generic class is intrusive it either is bloated with redundancy (like idLinkList above which is a stunning 16 

bytes on a 32-bit system) or it needs knowledge of the "linked object" (like idQueue below). In both cases the 

member variable of the generic class type needs to be public on the "linked object" which is clearly 

undesirable. 

 

/* 
       A public member variable of this type is added to the class of the "linked object". 
       Not only is this class intrusive, the member variable also needs to be public. 
*/ 
template< typename type > 
class idQueueNode { 
       type * next; 
}; 
 
/* 
       The idQueue class then needs to know the offset to the idQueueNode member 
       variable stored on the "linked object". 
*/ 
template< typename type, idQueueNode<type> type::*nodePtr > 
class idQueue { 
       type * first; 
       type * last; 
}; 

 

Intrusive linked lists and intrusive hierarchical data structures are generally questionable because they don't 

allow an object to be easily linked into multiple lists or hierarchies. One or more new member variables need to 

be added for every list or hierarchy the objects needs to be linked into. These member variables typically need 

to be public to allow third parties to iterate over the objects and they often also have to be mutable to keep all 
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the code const correct because adding/removing an object from a list or hierarchy does not necessarily change 

the true state of the object. 

 

If the generic class is non-intrusive then an object of the generic class is separately allocated and there is 

redundancy because the generic class needs to store a pointer to the "linked object". Often the "linked object" 

also stores a pointer to the generic class to be able to easily unlink the object from the list or hierarchy (making 

it intrusive again). The 'idLinkList' class can be used in this manner where an 'idLinkList' object is allocated 

separately and optionally the "linked object" stores a pointer to this 'idLinkList' object. 

 

Aside from poor code quality it is generally better to stay away from pointer based linked lists and hierarchies 

in run-time engine code because of the poor performance. It is usually much more efficient to use an 'idList' 

with pointers and/or use indices instead of pointers. Indices can often be smaller than pointers, they result in 

better cache locality and compilers usually generate more efficient code when offsetting a single pointer with 

an index as opposed to incrementing pointers or walking linked pointers. On a side note, the name 'idList' is 

really unfortunate considering this class implements a resizable heap array (although the name could be worse 

like 'vector'). 

 

To evaluate the potential performance benefits, compare the following code: 

 

class idMyClass { 
       bool valid; 
       byte otherMembers[64];    // over a cache line worth of other members 
       idMyClass * next; 
}; 
 
idMyClass * myObjects; 
 
for ( idMyClass * c = myObjects; c != NULL; c = c->next ) { 
       if ( c->valid ) { 
       } 
} 

 

with the code below: 

 

class idMyClass { 
       bool valid; 
       byte otherMembers[64];    // over a cache line worth of other members 
}; 
 
idList< idMyClass * > myObjects; 
 
for ( int i = 0; i < myObjects.Num(); i++ ) { 
       if (myObjects[i]->valid ) { 
       } 
} 

 

In the first case there are two potential cache misses per iteration because the ‘valid’ flag and ‘next’ pointer are 

more than a cache line apart. Each cache miss costs hundreds of clock cycles that could instead be used to 

perform real work. In the case of an array with pointers there may still be a cache miss when reading the ‘valid’ 

flag but there will be at most one additional cache miss every 16 pointers (assuming 32-bit pointers and 64-



8 
 

byte cache lines) and a modern CPU will predictively prefetch memory and cache pointers because they are 

stored contiguously in memory. Additionally, if the CPU does not predictively prefetch then the 'idList' with 

pointers allows manual prefetching while the linked list does not. 

 

Being able to directly remove an object from a linked list is often used as a reason to use a linked list. 

Removing an object from a linked list using a non-intrusive linked list structure is obviously expensive because 

the linked list first has to be walked to find where the object is linked. On the other hand, removing an object 

from an intrusive linked list is thought to be cheap, while it really is not. Typical code to remove an object from 

a doubly linked list looks like the following: 

 

// potential cache miss touching the ‘prev’ pointer 
if ( object->prev != NULL ) { 
       // potential cache miss touching the ‘next’ pointer on the ‘prev’ object 
       object->prev->next = object->next; 
} else { 
       head = object->next; 
} 
// touching the ‘next’ pointer probably does not result in a cache miss 
// because it is typically on the same cache line as the ‘prev’ pointer 
if ( object->next != NULL ) { 
       // potential cache miss touching the ‘prev’ pointer on the ‘next’ object 
       object->next->prev = object->prev; 
} else { 
       tail = object->prev; 
} 

 

If we assume the ‘head’ and ‘tail’ pointers are in cache (or there may not even be a ‘tail’ pointer) then unlinking 

an object from a linked lists comes at the cost of three potential cache misses, each of which is hundreds of 

clock cycles. In other words, unlinking an object from a linked list may seem cheap when looking at the number 

of operations performed, it can be very expensive when it comes down to the number of cache misses and 

therefore total clock cycles. 

 

Removing a pointer from an 'idList' with pointers sounds expensive because, without knowing the index at 

which the pointer is stored, the list has to be iterated to find the position of the pointer. Obviously each object in 

the list could store the index in the list at which a pointer to the object is stored but that would make the list 

effectively intrusive which is undesirable. 

 

An 'idList' with pointers, however, can store 16 pointers per cache line (assuming 32-bit pointers and 64-byte 

cache lines). Comparing pointers while iterating the list does not require the pointers to be de-referenced and 

is no more than a couple of clock cycles because the branch is highly predictable (all pointers compare 

unequal except for the last). In other words, 16 pointers can be compared at a fraction of the cost of a single 

cache miss and many more at the cost of three cache misses (the typical cost of unlinking from a doubly linked 

list). A modern CPU will predict the memory access pattern and automatically prefetch pointers from the list 

because they are contiguous in memory. So in reality hundreds of pointers can be compared at a cost 

equivalent to three cache misses. As such, finding a pointer in a medium sized list is far less expensive than 

one would think. Obviously finding a pointer in a list with many thousands of pointers can still be expensive or 

may cause cache thrashing. 
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Actually removing a pointer from the 'idList' may be expensive if the list needs to stay sorted and the list is not 

supposed to have any NULL pointers. In this case all the pointers beyond the index at which the to be removed 

pointer is stored need to be moved down. Due to predictive prefetching on a modern CPU this is once again 

not as expensive as it may seem but it is not for free either. However, if the order of the pointers is not a 

concern then 'idList' implements two handy methods "RemoveFast" and "RemoveIndexFast". These methods 

replace the to be removed element with the last element in the list. This is obviously much less expensive. 

 

So in general, instead of using a linked list, it is preferable to use an 'idList' with pointers because it is non-

intrusive, does not require a lot of memory or many memory allocations, and iterating is more efficient. The 

'idList' is also bounds checked and the code will generally be cleaner (no intrusive public variables, easy to add 

objects to multiple lists, more const correct code etc.). In many cases removing an object from an 'idList' will 

actually be faster than removing an object from a linked list. Looking at the DOOM 3 BFG code, lists are 

iterated more often than objects are removed, or the occasionally more expensive removal from an 'idList' is 

easily offset by not having the extra cost due to cache misses when iterating a linked list. If (and only if) the 

performance of object removal from an 'idList' does become a problem then using a linked list can still be 

considered (probably one rolled out by hand that does not suffer from the aforementioned problems with a 

generic template class). However, in many cases it may be preferable to instead use an 'idHashIndex' to be 

able to quickly find the index of a pointer in the 'idList' (for instance when dealing with very long lists). These 

are things to consider when parts of the code have been identified as problematic from a performance 

perspective. The last thing we want is premature optimizations at the cost of intrusive data structures that 

result in less clean code. 

 

When it comes to hash tables, the 'idHashTable' template class is not very good for various reasons. This 

class is not intrusive but requires a memory allocation for every element that is added. For each element a 

node is allocated to link the element into the hash table. Such a node stores the hash key, the 'value' of the 

element and a pointer to the next element in the hash chain. Storing the hash key and the 'next' pointer adds at 

least 8 bytes of overhead for every element that is added and the overhead of general memory allocations will 

cause a lot of memory to be wasted. Memory access patterns will also be poor due to all the separate memory 

allocations. 'idHashTable' is also designed to be the only access to a set of elements because the 'value' of 

each element is stored on a node. Each node can store a pointer to an element (that is kept in a separate list), 

but that will further degrade performance due to additional pointer chasing and cache misses. 

 

It is important to realize that a hash table is really no more than an acceleration data structure. Once again it is 

preferable to use an 'idList' to store elements and only if looking up elements in the 'idList' is identified as a 

performance problem then it is worth considering alternatives. If performance is important then it is generally 

preferred to use an 'idHashIndex' instead of using an 'idHashTable'. The 'idHashIndex' class may be somewhat 

non-intuitive at first but it has very good performance with very little overhead. In contrast an 'idHashTable' 

partly defeats the purpose because it is an acceleration data structure that does not have particularly good 

performance. 

 

Unlike an 'idHashTable', an 'idHashIndex' does not replace an 'idList. Instead an 'idHashIndex' is added next to 

the 'idList' that stores the elements. If fast access based on multiple keys is desired then multiple 'idHashIndex' 

objects can be added next to a single 'idList' with elements. Next to storing a hash table, an 'idHashIndex' adds 

only 4 bytes of overhead per element. The 'idHashIndex' also uses only two memory allocations and the data 

is tightly packed to avoid any additional overhead and for improved memory access patterns. 
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5. Conclusion 
 

Re-optimizing DOOM 3 for today's hardware not only reveals a change in the way high performance software 

is designed and implemented, it also exposes some interesting hardware limitations. Today's software has to 

implement multiple threads of execution that can run in parallel to take advantage of the multiple cores on 

current CPUs. However, if these threads touch a significant amount of memory then cache thrashing may 

occur while many CPUs are poorly equipped to avoid large scale cache pollution. Without additional 

instructions to manage or bypass the cache, a shared cache between all CPU cores can result in less than 

ideal performance. 

 

Today's GPUs implement various hard-wired high performance components that can significantly improve the 

rendering performance. However, taking full advantage of these components, like the coarse Z-Cull / 

Hierarchical-Z, can be challenging, especially when a rendering algorithm requires the use of different depth 

tests. DOOM 3 uses stencil shadow volumes to define the regions in space that are in shadow of an occluder. 

If the view intersects or is inside a shadow volume then the fragments of the triangles that define the volume 

need to update the stencil buffer when they fail the depth test (Z-fail rendering). On various hardware this 

results in poor performance due to the way the coarse Z-Cull / Hierarchical-Z is implemented in hardware. 

 

Analyzing the performance of the DOOM 3 and DOOM 3 BFG code also reveals various data structures that 

exhibit poor performance on today's hardware. These data structures tend to result in poor memory access 

patterns and excessive cache misses. To make matters worse, some of these data structures also results in 

poor code quality. 
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