
Shadow Volume Construction
April 8th 2005
J.M.P. van Waveren

© 2005, Id Software, Inc.

Abstract
Optimized routines to create shadow volumes are presented. Conditionally executed

code is replaced with instructions that are always executed and the Intel Streaming

SIMD Extensions are used to exploit parallelism and minimize the number of executed

instructions. The optimized routines are significantly faster than the implementation in

C on a Pentium 4.

1. Introduction
Shadows are important in many applications because they add realism and help in

understanding spatial relationships between objects. For instance shadows can put an

animating character in place, making it much easier to see when the character is

airborne or on the ground. The following two screenshots show a monster from the

computer game DOOM III without and with shadows. Clearly it is much easier to

determine the monsters is standing on the ground when the model casts shadows.

Advances in graphics hardware have made it possible to accurately render shadows

from point and directional l ight sources in interactive applications. There are several

different approaches to rendering real-time shadows on today's hardware. The more

popular approaches use shadow maps, shadow volumes or a combination of these to

define the regions in space that are in shadow.

Approaches based on shadow maps can render shadows from point lights, spot lights

and directional l ights for any kind of occluder geometry. First the distance from the

light source of all objects that cast shadows is rendered onto a shadow map texture

from the point of view of the light source. Next objects that receive shadows are

rendered on-screen and the distance from a rendered pixel to the light source is

compared to the value of the pixel in the shadow map texture that projects onto the

rendered pixel to determine whether or not the rendered pixel is in shadow. Shadow

mapping often suffers from aliasing because the projection transform used to map

shadow map pixels onto on-screen pixels changes the screen size of such pixels. As a

result very large shadow maps and filtering have to be used to achieve good quality.

The approaches based on shadow volumes define the regions in space that are in

shadow of an occluder in object space with additional geometry. Shadow volumes can

be constructed for point lights, spot lights and directional l ight sources and always

produce pixel-accurate but hard shadows. Approaches using shadow volumes cannot

deal with objects that have no polygonal structure such as alpha-tested or displacement

mapped geometry. Shadow volumes are typically constructed on the CPU which can be

expensive. In this article the Intel Streaming SIMD Extensions are used to optimize the

construction of shadow volumes on the CPU.

Several methods have been proposed to create shadow volumes entirely in vertex

programs on today's graphics hardware [13,17,18,19]. However, as Kilgard [16] points

out, computing silhouette edges within a vertex program may not improve performance

if the occluders have high triangle counts or if there are a lot of shadow casting light

sources. The reason is the need to push many more vertices into the pipeline that all

have to go through the silhouette edge determination within the vertex program [19].

As a result occluders with high triangle counts generate large amounts of wasted

vertices (degenerate triangles), and the cost of testing all the extra vertices may very

well exceed the CPU and geometry upload savings. As more light sources interact with

the geometry the vertex program costs accumulate rapidly because intermediate results

and common calculations cannot be saved and/or shared on today's graphics hardware.

1.1 Previous Work

Shadow volumes were introduced by Frank Crow [1]. Bergeron [2] generalized shadow

volumes for non-manifold objects and non-planar polygons. BSP trees have been used

to accelerate shadow volume computation [5], but they do not work well with moving

lights or dynamic objects.

One of the first implementations using graphics hardware to render shadow volumes

was demonstrated in Pixel-Planes [4]. Heidmann [6] implemented Crow's algorithm

using the stencil buffer. This approach is known as the z-pass method and can produce

incorrect results when the viewport cuts through a shadow volume. Diefenbach [7]

presented capping methods, but these are not completely robust. To overcome these

problems several researchers have proposed z-fail testing, also known as "Carmack's

Reverse", for shadow volume rendering [9,10,11,12]. Brennan [13] presented methods

for constructing shadow volumes entirely in vertex programs. Brabec and Seidel [17]

described an algorithm for fast shadow volume computation using graphics hardware for

silhouette edge determination where geometry is encoded as colors. McGuire and

Hughes [19] described how to find silhouettes and extrude them into shadow volume

sides entirely in a vertex program using a specially precomputed mesh.

1.2 Layout

Section 2 describes some details of shadow volumes. Section 3 describes the basic

algorithm used to create a shadow volume for an arbitrary triangle mesh. Sections 4

through 7 describe how the different parts of the algorithm can be optimized using the

Intel Streaming SIMD Extensions. The results of the optimizations are presented in

section 8 and several conclusions are drawn in section 9.

2. Shadow Volumes
Shadow volumes can be constructed for point lights, spot lights and directional l ight

sources and always produce pixel-accurate but hard shadows. A shadow volume defines

the regions in space that are in shadow of an occluder in object space with additional

geometry. This geometry is a regular mesh that is not visible but rendered into a

separate buffer, usually a stencil buffer. The shadow volume geometry is derived from

the occluder geometry given a light source. It is typically hard or not possible to

construct shadow volumes for occluders that have no polygonal structure such as alpha-

tested or displacement mapped geometry.

The algorithm presented here assumes occluder triangles that face away from the light

source cast shadows. The shadow volume sides are constructed from the extrusion of

silhouette edges of the occluder geometry. Such silhouette edges are the boundaries

between lit and unlit triangles. The shadow volume is capped on one end by the

triangles facing away from the light source. On the other end the shadow volume is

capped by another copy of the same triangles but these triangles are projected away

from the light source to infinity. To properly render the shadow volume the vertices of

the shadow volume triangles must consistently wind counterclockwise so that the

triangle normals point out of the shadow volume.

To determine the regions in space that are in shadow of an occluder the stencil buffer is

first cleared to all zeros. The shadow volume for the occluder is then rendered to the

stencil buffer with an appropriate depth test. Front facing shadow volume triangles

increment and back facing triangles decrement the stencil buffer pixels. Pixels with a

stencil buffer value unequal zero are now considered in shadow.

Not all the shadow volume geometry needs to be drawn at all times. The shadow volume

caps can be culled and often completely omitted [20]. Special hardware features like

two-sided stencil testing, scissor rectangles and depth clamping can be used to further

improve the performance of shadow volume rendering [12].

3. Creating Shadow Volumes
The routine presented here creates a shadow volume for an arbitrary triangle surface.

The shadow volume is created as a list with vertex indices. The actual vertices of the

shadow volume are not copied and/or extruded in this routine.

Transferring vertex data is avoided by using a double length vertex buffer and a vertex

program to perform the shadow volume extrusion in hardware. All the vertices are

duplicated in this double length vertex buffer and it is usually more efficient to use a

separate vertex buffer for shadow volume rendering with vertices that only store

positions. Another vertex buffer with vertices described with texture coordinates,

normals, tangents etc. is used for rendering the visual representation of the surface.

The vertex buffer for rendering shadow volumes contains two consecutive copies of each

vertex with the positions stored as homogenous coordinates. The vertices at even

positions in this vertex buffer are of the form (x,y,z,1) and the vertices at the odd

positions are of the form (x,y,z,0). The light position is subtracted from the (x,y,z) of

the vertices at the odd positions in the vertex program which allows all shadow volumes

for a single surface to use the same vertex buffer. When the appropriate hardware is

not available unique vertex buffers have to be used for each shadow volume and the

light origin is subtracted from the vertices at odd positions on the CPU. Because the 'w'

component of the homogenous coordinates for the vertices at the odd positions is zero

these vertices are projected to infinity and not clipped by the far clipping plane when

projected with an appropriate projection matrix [12].

The routine presented here creates indices for the shadow volume triangles to be used

with a vertex buffer as described above. The code for this routine is l isted below. The

occluder triangle surface is specified as an array with indices. For each triangle this

array contains three elements with the numbers of the vertices that create the triangle.

To construct the shadow volume sides additional connectivity information of the

occluder triangles is required. For this purpose an array with SilEdge objects is passed

into the routine below. This array has a SilEdge object for every triangle edge in the

surface that may potentially become a silhouette edge. Such an SilEdge object stores

two triangle/plane numbers and the indices of two vertices that define an edge. It is

important to construct the SilEdge objects with consistent edge orientations to make

sure the shadow volume side triangles have the correct winding directions. The vertices

of the shadow volume triangles must wind counterclockwise so that the surface normal

points out of the shadow volume. The SilEdge object is defined in code as follows.

struct SilEdge {
 int p1, p2; // triangles/planes defining the edge
 int v1, v2; // vertices defining the edge
};

To make sure shadow volumes with correct winding orders are created the convention is

used in which the edge from SilEdge::v1 to SilEdge::v2 is counterclockwise in the

triangle SilEdge::p1 and clockwise in the triangle SilEdge::p2. Because a double size

vertex buffer is used for the shadow volumes the vertex numbers in the SilEdge objects

are multiplied by two so they point at the even vertices in the vertex buffer. The array

with SilEdge objects is setup once for a surface and can be used to construct all shadow

volumes.

The 'CreateShadowVolume' routine listed below takes a 'facing' parameter which is an

array with 'number of triangles plus one' bytes. A byte in this array is set to one if the

associated triangle faces the light source and set to zero if the triangle faces away from

the light source. The last byte in the array is not associated with any particular triangle

but is used for dangling edges. Edges in the surface that are used by only a single

triangle have a SilEdge object defined for them with the second plane number pointing

at this last byte in the 'facing' array. Because this last byte is always set to one a

dangling edge will contribute to the shadow silhouette of the surface when a triangle

with the dangling edge faces away from the light source.

Whether or not a triangle faces the light source can be calculated by testing if the light

source is at the front side of the triangle plane. If ax + by + cz + d = 0 is the triangle

plane equation then the facing information is calculated as shown in appendix A. In this

routine the (light.x, l ight.y, l ight.z, l ight.w) is the light origin for spot lights or the light

direction for directional l ights. The triangle plane equations are calculated once per

surface and are only recalculated when the vertex positions of the occluder triangles

change for instance when the surface animates. All lights interacting with the surface

can use the same plane equations to derive facing information.

The 'CreateShadowVolume' routine listed below also takes a 'cullBits' parameter which

is an array with a byte for each vertex with culling information. A bit in such a byte

tells whether or not the vertex is at the right side of one of the bounding planes of the

light volume. Typically only 6 bits of each byte are used for lights with 6 bounding

planes. If any of these 6 bits is set to one the vertex is outside the light volume. The

'cullBits' parameter can be null if no culling information is available or if the complete

surface is inside the light volume. Usually the bounding volume of the surface can be

quickly tested against the bounding planes of the light volume. The surface is often

completely in front of at least several of the light volume bounding planes and all the

bits for such bounding planes are set to zero in the 'cullBits' array. The routine to

calculate the cull buts is l isted in appendix B.

Whether or not the culling information should be calculated and used depends on the

kind of l ights and surfaces that interact with each other. For small surfaces in large

light volumes the culling information is not used when the surface is completely inside

the light volume. However, the culling information should be used for small l ights

interacting with very large surfaces. For instance the headlights of a car driving over

terrain typically only interact with a few triangles of the terrain mesh. The terrain

triangles that do not interact with the light volume should be culled to reduce the

number of shadow volume triangles and to save fil l rate.

int CreateShadowVolume(int *shadowIndices, const int *indices, int numIndices, const SilEdge *silEdges, int
numSilEdges, byte *facing, const byte *cullBits) {
 int numShadowingTriangles, numSilhouetteIndices, numCapIndices;
 int numTriangles = numIndices / 3;

 if (cullBits == NULL) {
 // count the number of shadowing triangles
 numShadowingTriangles = numTriangles - CountFacing(facing, numTriangles);
 } else {
 // count the number of shadowing triangles and make all triangles that are outside the light frustum
 // "facing" so they won't cast shadows
 numShadowingTriangles = numTriangles - CountFacingCull(facing, numTriangles, indices, cullBits);
 }

 if (!numShadowingTriangles) {
 // no triangles are inside the light frustum and still facing the right way
 return 0;
 }

 // create triangles along silhouette planes
 numSilhouetteIndices = CreateSilTriangles(shadowIndices, facing, silEdges, numSilEdges);

 // put some triangles on the model and some on the distant projection
 numCapIndices = CreateCapTriangles(shadowIndices + numSilhouetteIndices, facing, indices, numIndices);

 return numSilhouetteIndices + numCapIndices;
}

The routine listed above calls four functions to do the actual work. The first two

functions count the number of facing triangles. The second function can also modify the

facing of some triangles based on the culling information. When a triangle is found to

be completely off to one side of one of the l ight volume bounding planes the triangle is

assumed facing and will not cast shadows. The last two functions that are called create

the actual indices for the shadow volume silhouette triangles and cap triangles

respectively. The following sections describe how these four functions can be optimized

using the Intel Streaming SIMD Extensions. The routines to calculate the facing of

triangles and the cull bits of vertices that are listed in appendix A and appendix B

respectively can also be optimized using the Intel Streaming SIMD Extensions.

However, these optimizations are straight forward and the assembler code is ommited

here.

4. Counting Facing Triangles
The function that counts the number of facing triangles can be implemented with a

simple loop in C as shown below.

int CountFacing(const byte *facing, const int numTriangles) {
 int i, n;

 n = 0;
 for (i = 0; i < numTriangles; i++) {
 if (facing[i]) {
 n++;
 }
 }
 return n;
}

Because a facing byte is always either one or zero there is no need to test whether or

not the facing byte is unequal zero in order to conditionally increment a counter.

Instead the facing bytes can simply be added together to avoid any conditional

branches.

n += facing[i];

This function can be further optimized in C by unrolling the loop several times and

removing the dependencies between the consecutive statements.

n0 += facing[i+0];
n1 += facing[i+1];
n2 += facing[i+2];
n3 += facing[i+3];

Here n0, n1, n2, n3 are four separate independent integer counters that are

accumulated after the loop as follows.

n = n0 + n1 + n2 + n3;

Using the Intel Streaming SIMD Extensions the loop can be unrolled many more times.

The SSE2 instruction set allows 16 unsigned bytes to be added in parallel with a single

'paddusb' instruction. The SSE2 instruction 'movdqa' can be used to load 16 facing

bytes. If more than 256 facing bytes are added the bytes could overflow in case all the

facing bytes happen to be set to one. Therefore the bytes have to be converted to word

or double word integers. The instructions 'punpcklbw', 'punpckhbw', 'punpcklwd' and

'punpckhwd' can be used for this purpose. The following code shows how 16 unsigned

bytes in the 'xmm0' register are added together to form 4 double word integers in the

same register.

movdqa xmm1, xmm0
punpcklbw xmm0, xmm7
punpckhbw xmm1, xmm7
paddusw xmm0, xmm1
movdqa xmm1, xmm0
punpcklwd xmm0, xmm7
punpckhwd xmm1, xmm7
paddd xmm0, xmm1

In the above code the 'xmm7' register contains all zeros. The 'punpcklbw' instruction is

used to interleave the low-order bytes of the two operands. Because the 'xmm7'

register contains all zeros the low-order bytes are interleaved with zeros and effectively

zero extended to words. In the same way the high-order bytes are zero extended to

words. The two registers with 8 words each are now added together and the result is

once more zero extended to double words with the 'punpcklwd' and 'punpckhwd'

instructions.

The complete optimized routine is l isted in appendix C. The routine has four loops. The

first loop adds 256 facing bytes per iteration, the second loop 16, the third loop 4 and

finally the last loop adds any remaining facing bytes. The routine listed in appendix C

assumes the array with facing bytes is aligned on a 16 byte boundary.

5. Counting Facing Triangles With Culling
The second function used to create shadow volumes can be implemented in C as

follows.

int CountFacingCull(byte *facing, const int numTriangles, const int *indices, const byte *cullBits) {
 int i, n;

 n = 0;
 for (i = 0; i < numTriangles; i++) {
 if (!facing[i]) {
 int i1 = indices[0];
 int i2 = indices[1];
 int i3 = indices[2];
 if (cullBits[i1] & cullBits[i2] & cullBits[i3]) {
 facing[i] = 1;
 n++;
 }
 } else {
 n++;
 }
 indices += 3;
 }
 return n;
}

This function counts the number of triangles that face the light source just like the

function described in the previous section. However, based on the cull bits of the

vertices, this function also culls triangles that are outside the light volume by setting

the facing byte for such triangles to one. If a triangle is completely off to one side of

one of the l ight volume bounding planes the bitwise logical 'and' of the cull bits for the

vertices will have a bit set to one and will as such be unequal zero. If the bitwise

logical 'and' of the cull bits is unequal zero the facing byte for the triangle is set to

one.

The function uses several conditional branches and there are several sections with

conditionally executed code. The conditional branches are often hard to predict because

the facing of triangles may change erratically while a surface animates. A surface may

also interact with many different light sources at different positions for which the facing

triangles are completely different. These hard to predict conditional branches typically

result in numerous mispredictions and significant penalties on today's CPUs that

implement a deep pipeline [22,23]. When a branch is mispredicted, the misprediction

penalty is typically the depth of the pipeline.

As such the routine can be optimized in C by replacing the poorly predictable branches

with some bit manipulation.

int c = cullBits[indices[0]] & cullBits[indices[1]] & cullBits[indices[2]];
facing[i] |= ((-c) >> 31) & 1;
n += facing[i];

First the bitwise logical 'and' of the cull bits for the vertices is calculated and stored in

the variable 'c'. If the triangle is completely off to one side of one of the light volume

bounding planes the variable 'c' will have a bit set to one and will as such be unequal

zero. By negating the variable 'c' the 31st bit will be set if and only if the variable is

unequal zero. This 31st bit is then shifted to bit position zero and a bitwise logical 'and'

with one is used to make sure no other bits are set. A bitwise logical 'or' is used to set

the facing of the triangle to one if the triangle is outside the light volume. Next the

triangle facing byte is added to the facing counter just l ike in the routine described in

the previous section.

The routine can be further optimized using the Intel Streaming SIMD Extensions.

Because the triangles may reference arbitrary vertices the cull bits for a single triangle

can be scattered in memory which forces the cull bits to be loaded individually. The

loop is unrolled four times and the bitwise logical 'and' of the cull bits for four triangles

are stored in the lower double word of the SSE register 'xmm0'. The 'pinsrw' instruction

is used to quickly insert the cull bits for the last two triangles into the SSE register.

Instead of negating the cull bits and shifting the 31st bit, the 'pcmpgtb' instruction is

used to compare the cull bits with zero and directly set each byte to either all zeros or

all ones. A bitwise logical 'and' with bytes set to one is used to make sure all bits of

each byte except the first are always set to zero. Four facing bytes are loaded and a

bitwise logical 'or' is used to set any triangles outside the light volume to facing. The

new facing bytes are stored back to memory and accumulated to count the total number

of facing triangles. To accumulate the facing bytes they are zero extended to double

words using the 'punpcklbw' and 'punpcklwd' instructions.

The complete optimized routine is l isted in appendix D. The routine assumes no

alignment for the arrays but for optimal performance the arrays should be at least

aligned on a 4 byte boundary.

6. Creating Silhouette Triangles
The following function can be used to setup the triangle indices for the shadow volume

sides.

int CreateSilTriangles(int *shadowIndices, const byte *facing, const SilEdge *silEdges, const int numSilEdges)
{
 int i;
 const silEdge_t *sil;
 int *si;

 si = shadowIndices;
 for (sil = silEdges, i = numSilEdges; i > 0; i--, sil++) {

 byte f1 = facing[sil->p1];
 byte f2 = facing[sil->p2];

 if (f1 != f2) {

 int v1 = sil->v1;
 int v2 = sil->v2;

 if (f1) {
 si[0] = v1;
 si[1] = v2 + 1;
 si[2] = v2;
 si[3] = v1;
 si[4] = v1 + 1;
 si[5] = v2 + 1;
 } else {
 si[0] = v1;
 si[1] = v2;
 si[2] = v2 + 1;
 si[3] = v1 + 1;
 si[4] = v1;
 si[5] = v2 + 1;
 }
 si += 6;
 }
 }
 return si - shadowIndices;
}

The function loops over the array with SilEdge objects of a surface. For each potential

silhouette edge the routine compares the facing of the two triangles that share the

edge. If one of the triangles faces the light source and the other does not then the edge

is part of the shadow silhouette. For each shadow silhouette edge the routine creates

two triangles that represent the extruded edge. To properly determine the regions in

space that are in shadow the vertices of the shadow volume triangles must consistently

wind counterclockwise so that the triangle normals point out of the shadow volume. As

such the triangle winding orders have to be set based on which of the two triangles

faces the light source.

Just like the function in the previous section this function uses several hard to predict

conditional branches. Mispredictions and significant penalties are the result. However,

the triangle winding order can be set based on facing without using a poorly predictable

branch as shown below.

si[0] = v1;
si[1] = v2 ^ f1;
si[2] = v2 ^ f2;
si[3] = v1 ^ f2;
si[4] = v1 ^ f1;
si[5] = v2 ^ 1;

It may not be immediately apparent the above code does the right thing. However, as

described in section 2 the SilEdge vertex numbers are multiplied with two and always

even. As such flipping the last bit of these vertex numbers is equivalent to adding one.

Furthermore if 'f1' equals one then 'f2' always equals zero and vice versa because only

one of the two triangles faces the light source.

The first conditional branch in the function above can be avoided by always writing out

the silhouette triangles but only updating the shadow volume index pointer when one

triangle faces the light source and the other does not.

si += 6 * (f1 ^ f2);

Changing the C code like this does not necessarily improve the performance. Even

through the misprediction penalties are avoided the function will burn through all

instructions in all cases. However, the Intel Streaming SIMD Extensions can be used to

minimize the number of instructions and dependencies such that avoiding the

misprediction penalties more than makes up for the additional instructions that would

not have been executed in the former case of a properly predicted branch for an edge

that is not part of the shadow silhouette.

In the optimized routine the loop is unrolled four times. The facing bytes are loaded

individually and moved to SSE registers. The SilEdge vertex numbers are loaded into an

SSE register with a single 'movq' instruction. Two shuffle and two bitwise logical

exclusive-or instructions are used to spread, and increment the vertex numbers based

on the facing of the triangles. In the C code above a bitwise logical exclusive-or with a

constant of one is used to increment one of the vertex numbers. However, the

optimized routine makes use of the fact that only ever one of the triangles faces the

light source for a shadow silhouette edge. As such only one of the two facing bytes 'f1'

and 'f2' is set to one which makes (v1 ^ f1 ^ f2) equivalent to (v1 ^ 1). The shadow

index pointer is incremented based on the facing of the triangles and the pointer is

moved between two general purpose registers to minimize the dependencies.

The complete optimized routine is l isted in appendix E. The routine assumes the arrays

with indices are aligned on a 16 byte boundary.

7. Creating Cap Triangles
The following function can be used to setup the triangle indices for the shadow volume

caps.

int CreateCapTriangles(int *shadowIndices, const byte *facing, const int *indices, const int numIndices) {
 int i, j;
 int *si;

 si = shadowIndices;
 for (i = 0, j = 0; i < numIndices; i += 3, j++) {
 if (facing[j]) {
 continue;
 }

 int i0 = indices[i+0] * 2;
 int i1 = indices[i+1] * 2;
 int i2 = indices[i+2] * 2;

 si[0] = i2;
 si[1] = i1;
 si[2] = i0;

 si[3] = i0 + 1;
 si[4] = i1 + 1;
 si[5] = i2 + 1;

 si += 6;
 }
 return si - shadowIndices;
}

The same strategy as used for the routine in the previous section can be used to

optimize the above function. The loop is unrolled 4 times to allow the indices for four

triangles to be loaded with three 'movdqa' instructions. The triangle indices are

rearranged with several shuffle instructions and a bitwise logical exclusive-or is used to

increment some of the triangle indices. The shadow index pointer is incremented based

on the facing of the triangles and the pointer is moved between two general purpose

registers to minimize the dependencies.

The complete optimized routine is l isted in appendix F. The routine assumes the arrays

with indices are aligned on a 16 byte boundary.

8. Results
The routines have been tested on an Intel® Pentium® 4 Processor on 130nm

Technology and an Intel® Pentium® 4 Processor on 90nm Technology. The routines

created shadow volumes for a realistic player character model with 1344 triangles and

2016 potential silhouette edges (SilEdge objects). Note that the number of potential

silhouette edges is the maximum number of edges of a two-manifold mesh (2016 =

1344 * 3 / 2). Furthermore 50% of the triangles face the light source and 20% of the

potential silhouette edges are part of the shadow silhouette. Different models may have

different triangle counts but these ratios are typically similar for human-like characters.

The total number of clock cycles and the number of clock cycles per triangle or

silhouette edge for each routine on the different CPUs are listed in the following table.

Hot Cache Clock Cycle Counts

Routine
P4 130nm

total
clock cycles

P4 130nm clock
cycles

per element

P4 90nm
total

clock cycles

P4 90nm clock
cycles

per element

CountFacing (C) 22548 17 22688 17

CountFacing (SSE) 348 0.3 383 0.3

CountFacingCull (C) 24124 18 29835 22

CountFacingCull (SSE) 10848 8 13883 10

CreateSilTriangles (C) 32314 16 44983 22

CreateSilTriangles (SSE) 32292 16 36901 18

CreateCapTriangles (C) 23780 18 33848 25

CreateCapTriangles (SSE) 12080 9 14205 11

CreateShadowVolume, no culling (C) 79042 59 112443 83

CreateShadowVolume, no culling
(SSE)

44924 33 51503 38

CreateShadowVolume, with culling (C)

80625 60 119590 89

CreateShadowVolume, with culling
(SSE)

55648 41 66660 50

9. Conclusion
The conventional algorithms to create shadow volumes on the CPU as presented in

literature typically use a lot of conditional branches and conditionally executed code.

These conditional branches are often hard to predict because the facing of triangles

may change erratically while a surface animates. A surface may also interact with many

different light sources at different positions for which the facing triangles are

completely different. These hard to predict conditional branches typically result in

numerous mispredictions and significant penalties on today's CPUs that implement a

deep pipeline like the Pentium 4. When a branch is mispredicted, the misprediction

penalty is typically the depth of the pipeline.

The conditionally executed code can be replaced with instructions that are always

executed. The optimized algorithm always burns through all instructions in all cases but

the number of executed instructions is minimized using the Intel Streaming SIMD

Extensions. Furthermore the instruction dependencies are minimized to exploit

maximum parallelism through the dynamic execution engine of the Pentium 4. As a

result the optimized algorithm is significantly faster while it does not suffer from

penalties due to mispredicted branches.

10. References

1. Shadow Algorithms for Computer Graphics

Frank Crow

Computer Graphics, Vol. 11, No.3, Proceedings of SIGGRAPH 1977, July 1977

Available Online: http://doi.acm.org/10.1145/563858.563901

2. Shadow volumes for non-planar polygons

P. Bergeron

In Graphics Interface '85 Proceedings, pp. 417-418, 1985

3. A General Version of Crow's Shadow Volumes

P. Bergeron

In IEEE Computer Graphics and Applications, 6(9), 17-28, 1986

4. Fast spheres, shadows, textures, transparencies, and image enhancements in Pixel-

Planes.

H. Fuchs, J. Goldfeather, J. P. HultQuist, S. Spach, J. D. Austin, JR. F. P. Brooks, J.

G. Eyles, J. Poulton

In Computer Graphics (SIGGRAPH '85 Proceedings), vol. 19, pp. 111-120, 1985

5. Near real-time shadow generation using BSP trees

N. Chin, S. Feiner

In Computer Graphics (SIGGRAPH '89 Proceedings), vol. 23, pp. 99-106, 1989

Available Online: http://doi.acm.org/10.1145/74333.74343

http://doi.acm.org/10.1145/563858.563901
http://doi.acm.org/10.1145/74333.74343

6. Real Shadows Real Time

Tim Heidmann

IRIS Universe, 18 pp. 23-31, November 1991

Available Online: http://developer.nvidia.com/object/robust_shadow_volumes.html

7. Multi-pass pipeline rendering: Interaction and realism through hardware provisions.

Paul Joseph Diefenbach

PhD thesis, University of Pennsylvania, 1996.

8. Shadow Volume Reconstruction from Depth Maps

Michael D. McCool

University of Waterloo, Waterloo, Ontario, Canada

ACM Transactions on Graphics (TOG), Volume 19, Issue 1, pp. 1-26 (January 2000)

Available Online: http://doi.acm.org/10.1145/343002.343006

9. Using the Stencil Buffer

Sim Dietrich

GDC, March 1999

10. Real Time Shadows

Bill Bilodeau, Mike Songy

Creativity 1999, Creative Labs Inc. Sponsored game developer conferences, Los

Angeles, California, and Surrey, England, May 1999.

11. On Shadow Volumes

John Carmack

id Software, May 2000

Available Online: http://developer.nvidia.com/object/robust_shadow_volumes.html

12. Practical and Robust Stenciled Shadow Volumes for Hardware-Accelerated Rendering

Cass Everitt, Mark J. Kilgard

nVidia Corporation, 2002

Available Online: http://developer.nvidia.com/object/robust_shadow_volumes.html

13. Shadow Volume Extrusion Using a Vertex Shader

Criss Brennan

ShaderX, Wolfgang Engel (editor), May 2002

Available Online: http://www.shaderx.com/

14. Computing Optimized Shadow Volumes

Alex Vlachos, Drew Card

Game Programm Gems 3, 2002

Available Online: http://www.GameProgrammingGems.com

http://developer.nvidia.com/object/robust_shadow_volumes.html
http://doi.acm.org/10.1145/343002.343006
http://developer.nvidia.com/object/robust_shadow_volumes.html
http://developer.nvidia.com/object/robust_shadow_volumes.html
http://www.shaderx.com/
http://www.gameprogramminggems.com/

15. Fast, Practical and Robust Shadows

Morgan McGuire, John F. Hughes, Kevin Egan, Mark J. Kilgard, Cass Everitt

nVidia Corporation, 2003

Available Online: http://developer.nvidia.com/object/fast_shadow_volumes.html

16. Optimized Stencil Shadow Volumes

Cass Everitt, Mark J. Kilgard

Game Developer Conference, 2003

Available Online:

http://developer.nvidia.com/docs/IO/8230/GDC2003_ShadowVolumes.pdf

17. Shadow Volumes on Programmable Graphics Hardware

S. Brabec, H. Siedel

Eurographics, 2003

18. GPU Shadow Volume Construction for Nonclosed Meshes

Warrick Buchanan

Game Programming Gems 4, 2003

Available Online: http://www.GameProgrammingGems.com

19. Hardware Determined Edge Features

Originally titled "NPR on Programmable Hardware"

Morgan McGuire and John F. Hughes.

Proceedings of the Non-Photorealistic Animation and Rendering 2004 (NPAR '04),

Annecy, France, June 7-9, 2004.

Available Online: http://www.cs.brown.edu/people/morgan/

20. GPU Gems - 9. Efficient Shadow Volume Rendering

Morgan McGuire (Brown University)

Randima Fernando (editor)

Addison-Wesley, 2004

21. CC Shadow Volumes

Brandon Lloyd, Jeremy Wendt, Naga Govindaraju, Dinesh Manocha

University of North Carolina at Chapel Hill, 2004

Eurographics Symposium on Rendering, 2004

Available Online: http://gamma.cs.unc.edu/ccsv/

22. Avoiding the Cost of Branch Misprediction

Rajiv Kapoor

Intel, December 2002

Available Online: http://www.intel.com/cd/ids/developer/asmo-na/eng/19952.htm

23. Branch and Loop Reorganization to Prevent Mispredicts

Jeff Andrews

http://developer.nvidia.com/object/fast_shadow_volumes.html
http://developer.nvidia.com/docs/IO/8230/GDC2003_ShadowVolumes.pdf
http://www.gameprogramminggems.com/
http://www.cs.brown.edu/people/morgan/
http://gamma.cs.unc.edu/ccsv/
http://www.intel.com/cd/ids/developer/asmo-na/eng/19952.htm

Intel, January 2004

Available Online: http://www.intel.com/cd/ids/developer/asmo-

na/eng/microprocessors/ia32/pentium4/optimization/66779.htm

Appendix A
/*
 Calculating Triangle Facing
 Copyright (C) 2005 Id Software, Inc.
 Written by J.M.P. van Waveren

 This code is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.
*/

struct Vec4 {
 float x, y, z, w;
};

struct Plane {
 float a, b, c, d;
};

void CalculateFacing(const Plane *planes, const int numTriangles, const Vec4 &light, byte *facing) {
 int i;

 for (i = 0; i < numTriangles; i++) {
 facing[i] = planes[i].a * light.x +
 planes[i].b * light.y +
 planes[i].c * light.z +
 planes[i].d * light.w > 0.0f;
 }
 facing[numTriangles] = 1; // for dangling edges to reference
}

Appendix B
/*
 Calculating Vertex Cull Bits
 Copyright (C) 2005 Id Software, Inc.
 Written by J.M.P. van Waveren

 This code is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.
*/

struct Vec4 {
 float x, y, z, w;
};

struct Plane {
 float a, b, c, d;
};

struct Vertex {
 Vec4 position;
 Vec4 normal;
};

http://www.intel.com/cd/ids/developer/asmo-na/eng/microprocessors/ia32/pentium4/optimization/66779.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/microprocessors/ia32/pentium4/optimization/66779.htm

struct Bounds {
 Vec4 center;
 Vec4 extents;
};

const float CULL_EPSILON = 0.0f;
const int NUM_LIGHT_PLANES = 6;

bool CalculateCullBits(const Vertex *verts, const int numVerts, const Bounds &surfaceBounds, const Plane
lightPlanes[NUM_LIGHT_PLANES], byte *cullBits) {
 int i, j, frontBits;

 assert(NUM_LIGHT_PLANES <= sizeof(cullBits[0]) * 8);

 frontBits = 0;

 // cull the triangle surface bounding box
 for (i = 0; i < NUM_LIGHT_PLANES; i++) {
 const Plane &plane = lightPlanes[i];
 float d1 = plane.a * surfaceBounds.center.x +
 plane.b * surfaceBounds.center.y +
 plane.c * surfaceBounds.center.z +
 plane.d;
 float d2 = fabs(plane.a * surfaceBounds.extents.x) +
 fabs(plane.b * surfaceBounds.extents.y) +
 fabs(plane.c * surfaceBounds.extents.z);

 if (d1 - d2 >= CULL_EPSILON) {
 frontBits |= 1 << i; // front bits for the whole surface
 }
 }

 // if the surface is completely inside the light frustum
 if (frontBits == ((1 << NUM_LIGHT_PLANES) - 1)) {
 return true; // return true if completely inside
 }

 memset(cullBits, 0, numVerts * sizeof(cullBits[0]));

 for (i = 0; i < NUM_LIGHT_PLANES; i++) {
 // if completely infront of this clipping plane
 if (frontBits & (1 << i)) {
 continue;
 }
 const Plane &plane = lightPlanes[i];
 for (j = 0; j < numVerts; j++) {
 int bit = plane.a * verts[j].position.x +
 plane.b * verts[j].position.y +
 plane.c * verts[j].position.z +
 plane.d < CULL_EPSILON;
 cullBits[j] |= bit << i;
 }
 }
 return false; // return false if not completely inside
}

Appendix C
/*
 SSE Optimized Counting of Facing Triangles
 Copyright (C) 2005 Id Software, Inc.
 Written by J.M.P. van Waveren

 This code is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.
*/

#define assert_16_byte_aligned(pointer) assert((((UINT_PTR)(pointer))&15) == 0);
#define ALIGN16(x) __declspec(align(16)) x
#define ALIGN4_INIT1(X, I) ALIGN16(static X[4] = { I, I, I, I })

#define ALIGN4_INIT4(X, I0, I1, I2, I3) ALIGN16(static X[4]) = { I0, I1, I2, I3 }
#define ALIGN16_INIT1(X, I0) ALIGN16(static X[16]) = { I0, I0, I0, I0, I0, I0, I0, I0, I0, I0,
I0, I0, I0, I0, I0, I0 }
#define R_SHUFFLE_D(x, y, z, w) (((w) & 3) << 6 | ((z) & 3) << 4 | ((y) & 3) << 2 | ((x) & 3
))

int CountFacing(const byte *facing, const int numTriangles) {
 ALIGN16(int n[4];)

 __asm {

 mov eax, numTriangles
 mov edi, facing
 test eax, eax
 jz done

 pxor xmm6, xmm6
 pxor xmm7, xmm7

 sub eax, 256
 jl run16

 loop256:
 movdqa xmm0, [edi+ 0*16]
 movdqa xmm1, [edi+ 1*16]
 movdqa xmm2, [edi+ 2*16]
 movdqa xmm3, [edi+ 3*16]
 paddusb xmm0, [edi+ 4*16]
 paddusb xmm1, [edi+ 5*16]
 paddusb xmm2, [edi+ 6*16]
 paddusb xmm3, [edi+ 7*16]
 paddusb xmm0, [edi+ 8*16]
 paddusb xmm1, [edi+ 9*16]
 paddusb xmm2, [edi+10*16]
 paddusb xmm3, [edi+11*16]
 paddusb xmm0, [edi+12*16]
 paddusb xmm1, [edi+13*16]
 paddusb xmm2, [edi+14*16]
 paddusb xmm3, [edi+15*16]
 paddusb xmm0, xmm1
 paddusb xmm2, xmm3
 paddusb xmm0, xmm2

 add edi, 256
 sub eax, 256

 movdqa xmm1, xmm0
 punpcklbw xmm0, xmm7
 punpckhbw xmm1, xmm7
 paddusw xmm0, xmm1
 movdqa xmm1, xmm0
 punpcklwd xmm0, xmm7
 punpckhwd xmm1, xmm7
 paddd xmm0, xmm1
 paddd xmm6, xmm0

 jge loop256

 run16:
 pxor xmm0, xmm0
 add eax, 256 - 16
 jl run4

 loop16:
 paddusb xmm0, [edi]
 add edi, 16
 sub eax, 16
 jge loop16

 run4:
 add eax, 16 - 4
 jl run1

 pxor xmm1, xmm1

 loop4:
 movd xmm1, [edi]
 paddusb xmm0, xmm1
 add edi, 4
 sub eax, 4
 jge loop4

 run1:
 movdqa xmm1, xmm0
 punpcklbw xmm0, xmm7
 punpckhbw xmm1, xmm7
 paddusw xmm0, xmm1
 movdqa xmm1, xmm0
 punpcklwd xmm0, xmm7
 punpckhwd xmm1, xmm7
 paddd xmm0, xmm1
 paddd xmm6, xmm0

 movdqa n, xmm6
 add eax, 4-1
 jl done

 mov edx, dword ptr n

 loop1:
 movzx ecx, [edi]
 add edx, ecx
 add edi, 1
 sub eax, 1
 jge loop1

 mov dword ptr n, edx

 done:
 }

 return n[0] + n[1] + n[2] + n[3];
}

Appendix D
/*
 SSE Optimized Culling and Counting of Facing Triangles
 Copyright (C) 2005 Id Software, Inc.
 Written by J.M.P. van Waveren

 This code is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.
*/

ALIGN16_INIT1(unsigned char SIMD_B_one, 1);

int CountFacingCull(byte *facing, const int numTriangles, int *indices, const byte *cullBits) {
 ALIGN16(int n[4];)

 __asm {
 push ebx
 mov eax, numFaces
 mov esi, indices
 mov edi, cull
 mov ebx, facing
 test eax, eax
 jz done
 add ebx, eax
 neg eax

 pxor xmm5, xmm5
 pxor xmm6, xmm6
 movdqa xmm7, SIMD_B_one

 add eax, 4
 jg run1

 loop4:

 mov ecx, dword ptr [esi+0*4]
 movzx edx, byte ptr [edi+ecx]
 mov ecx, dword ptr [esi+1*4]

 and dl, byte ptr [edi+ecx]
 mov ecx, dword ptr [esi+2*4]
 and dl, byte ptr [edi+ecx]

 mov ecx, dword ptr [esi+3*4]
 mov dh, byte ptr [edi+ecx]
 mov ecx, dword ptr [esi+4*4]
 and dh, byte ptr [edi+ecx]
 mov ecx, dword ptr [esi+5*4]
 and dh, byte ptr [edi+ecx]
 movd xmm0, edx

 mov ecx, dword ptr [esi+6*4]
 movzx edx, byte ptr [edi+ecx]
 mov ecx, dword ptr [esi+7*4]
 and dl, byte ptr [edi+ecx]
 mov ecx, dword ptr [esi+8*4]
 and dl, byte ptr [edi+ecx]

 mov ecx, dword ptr [esi+9*4]
 mov dh, byte ptr [edi+ecx]
 mov ecx, dword ptr [esi+10*4]
 and dh, byte ptr [edi+ecx]
 mov ecx, dword ptr [esi+11*4]
 and dh, byte ptr [edi+ecx]
 pinsrw xmm0, edx, 1

 add esi, 12*4

 movd xmm1, [ebx+eax-4]
 pcmpgtb xmm0, xmm6
 pand xmm0, xmm7
 por xmm1, xmm0
 movd [ebx+eax-4], xmm1

 add eax, 4

 punpcklbw xmm1, xmm6
 punpcklwd xmm1, xmm6
 paddd xmm5, xmm1

 jle loop4

 run1:
 sub eax, 4
 jge done

 loop1:
 mov ecx, dword ptr [esi+0*4]
 movzx edx, byte ptr [edi+ecx]
 mov ecx, dword ptr [esi+1*4]
 and dl, byte ptr [edi+ecx]
 mov ecx, dword ptr [esi+2*4]
 and dl, byte ptr [edi+ecx]

 neg edx
 shr edx, 31
 movzx ecx, byte ptr [ebx+eax]
 or ecx, edx
 mov byte ptr [ebx+eax], cl
 movd xmm0, ecx
 paddd xmm5, xmm0

 add esi, 3*4
 add eax, 1
 jl loop1

 done:
 pop ebx
 movdqa dword ptr n, xmm5
 }

 return n[0] + n[1] + n[2] + n[3];
}

Appendix E
/*
 SSE Optimized Construction of Shadow Volume Silhouette Triangles
 Copyright (C) 2005 Id Software, Inc.
 Written by J.M.P. van Waveren

 This code is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.
*/

struct SilEdge {
 int p1, p2; // planes defining the edge
 int v1, v2; // verts defining the edge
};

int CreateSilTriangles(int *shadowIndices, const byte *facing, const SilEdge *silEdges, const int numSilEdges)
{
 int num;

 __asm {
 push ebx
 mov eax, numSilEdges
 mov ebx, shadowIndexes
 mov esi, facing
 mov edi, silEdges
 shl eax, 4
 jz done
 add edi, eax
 neg eax
 shr ebx, 3

 add eax, 4*16
 jg run1

 loop4:
 mov ecx, dword ptr [edi+eax-4*16+0]
 movzx ecx, byte ptr [esi+ecx]
 movd xmm2, ecx
 mov edx, dword ptr [edi+eax-4*16+4]
 movzx edx, byte ptr [esi+edx]
 pinsrw xmm2, edx, 2
 movq xmm0, qword ptr [edi+eax-4*16+8]
 pshufd xmm1, xmm2, R_SHUFFLE_D(2, 0, 1, 1)
 xor ecx, edx
 pshufd xmm0, xmm0, R_SHUFFLE_D(0, 1, 1, 0)
 lea edx, [ecx*2+ecx]
 pxor xmm0, xmm1
 add edx, ebx
 movlps qword ptr [ebx*8+0*4], xmm0
 pxor xmm2, xmm0
 movhps qword ptr [ebx*8+2*4], xmm0
 movlps qword ptr [ebx*8+4*4], xmm2

 mov ecx, dword ptr [edi+eax-3*16+0]
 movzx ecx, byte ptr [esi+ecx]
 movd xmm3, ecx
 mov ebx, dword ptr [edi+eax-3*16+4]
 movzx ebx, byte ptr [esi+ebx]
 pinsrw xmm3, ebx, 2
 movq xmm0, qword ptr [edi+eax-3*16+8]
 pshufd xmm1, xmm3, R_SHUFFLE_D(2, 0, 1, 1)
 xor ecx, ebx
 pshufd xmm0, xmm0, R_SHUFFLE_D(0, 1, 1, 0)
 lea ebx, [ecx*2+ecx]
 pxor xmm0, xmm1
 add ebx, edx
 movlps qword ptr [edx*8+0*4], xmm0
 pxor xmm3, xmm0
 movhps qword ptr [edx*8+2*4], xmm0
 movlps qword ptr [edx*8+4*4], xmm3

 mov ecx, dword ptr [edi+eax-2*16+0]

 movzx ecx, byte ptr [esi+ecx]
 movd xmm2, ecx
 mov edx, dword ptr [edi+eax-2*16+4]
 movzx edx, byte ptr [esi+edx]
 pinsrw xmm2, edx, 2
 movq xmm0, qword ptr [edi+eax-2*16+8]
 pshufd xmm1, xmm2, R_SHUFFLE_D(2, 0, 1, 1)
 xor ecx, edx
 pshufd xmm0, xmm0, R_SHUFFLE_D(0, 1, 1, 0)
 lea edx, [ecx*2+ecx]
 pxor xmm0, xmm1
 add edx, ebx
 movlps qword ptr [ebx*8+0*4], xmm0
 pxor xmm2, xmm0
 movhps qword ptr [ebx*8+2*4], xmm0
 movlps qword ptr [ebx*8+4*4], xmm2

 mov ecx, dword ptr [edi+eax-1*16+0]
 movzx ecx, byte ptr [esi+ecx]
 movd xmm3, ecx
 mov ebx, dword ptr [edi+eax-1*16+4]
 movzx ebx, byte ptr [esi+ebx]
 pinsrw xmm3, ebx, 2
 movq xmm0, qword ptr [edi+eax-1*16+8]
 pshufd xmm1, xmm3, R_SHUFFLE_D(2, 0, 1, 1)
 xor ecx, ebx
 pshufd xmm0, xmm0, R_SHUFFLE_D(0, 1, 1, 0)
 lea ebx, [ecx*2+ecx]
 pxor xmm0, xmm1
 add ebx, edx
 movlps qword ptr [edx*8+0*4], xmm0
 pxor xmm3, xmm0
 movhps qword ptr [edx*8+2*4], xmm0
 add eax, 4*16
 movlps qword ptr [edx*8+4*4], xmm3

 jle loop4

 run1:
 sub eax, 4*16
 jge done

 loop1:
 mov ecx, dword ptr [edi+eax+0]
 movzx ecx, byte ptr [esi+ecx]
 movd xmm2, ecx
 mov edx, dword ptr [edi+eax+4]
 movzx edx, byte ptr [esi+edx]
 pinsrw xmm2, edx, 2
 movq xmm0, qword ptr [edi+eax+8]
 pshufd xmm1, xmm2, R_SHUFFLE_D(2, 0, 1, 1)
 pshufd xmm0, xmm0, R_SHUFFLE_D(0, 1, 1, 0)
 pxor xmm0, xmm1
 movlps qword ptr [ebx*8+0*4], xmm0
 movhps qword ptr [ebx*8+2*4], xmm0
 pxor xmm2, xmm0
 movlps qword ptr [ebx*8+4*4], xmm2
 xor ecx, edx
 lea edx, [ecx*2+ecx]
 add ebx, edx

 add eax, 16
 jl loop1

 done:
 shl ebx, 3
 mov num, ebx
 pop ebx
 }

 return (num - (int)shadowIndexes) >> 2;
}

Appendix F
/*
 SSE Optimized Construction of Shadow Volume Cap Triangles
 Copyright (C) 2005 Id Software, Inc.
 Written by J.M.P. van Waveren

 This code is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.
*/

ALIGN4_INIT4(unsigned long SIMD_DW_capTris_c0, 0, 0, 0, 1);
ALIGN4_INIT4(unsigned long SIMD_DW_capTris_c1, 1, 1, 0, 0);
ALIGN4_INIT4(unsigned long SIMD_DW_capTris_c2, 0, 1, 0, 0);

int CreateCapTriangles(int *shadowIndices, const byte *facing, const int *indices, const int numIndices) {
 int num = numIndexes / 3;

 __asm {
 push ebx
 mov eax, numIndexes
 mov ebx, shadowIndexes
 mov esi, facing
 mov edi, indexes
 shl eax, 2
 jz done
 add edi, eax
 mov eax, num
 add esi, eax
 neg eax
 shr ebx, 3

 movaps xmm6, SIMD_DW_capTris_c0
 movaps xmm7, SIMD_DW_capTris_c1
 movaps xmm5, SIMD_DW_capTris_c2

 add eax, 4
 lea edx, [eax*2+eax]
 jg run1

 loop4:
 movdqa xmm0, [edi+edx*4-4*3*4+0] // xmm0 = 0, 1, 2, 3
 paddd xmm0, xmm0
 pshufd xmm1, xmm0, R_SHUFFLE_D(2, 1, 0, 0) // xmm1 = 2, 1, 0, 0
 movzx ecx, byte ptr [esi+eax-4]
 pshufd xmm2, xmm0, R_SHUFFLE_D(1, 2, 1, 2) // xmm2 = 1, 2, 1, 2
 sub ecx, 1
 pxor xmm1, xmm6
 and ecx, 3
 movlps qword ptr [ebx*8+0*4], xmm1
 add ecx, ebx
 movhps qword ptr [ebx*8+2*4], xmm1
 pxor xmm2, xmm7
 movlps qword ptr [ebx*8+4*4], xmm2

 movdqa xmm3, [edi+edx*4-3*3*4+4] // xmm3 = 4, 5, 6, 7
 paddd xmm3, xmm3
 shufps xmm0, xmm3, R_SHUFFLE_D(3, 3, 1, 0) // xmm0 = 3 3, 5, 4
 movzx ebx, byte ptr [esi+eax-3]
 movdqa xmm2, xmm3 // xmm2 = 4, 5, 6, 7
 sub ebx, 1
 pxor xmm0, xmm5
 and ebx, 3
 movhps qword ptr [ecx*8+0*4], xmm0
 add ebx, ecx
 movlps qword ptr [ecx*8+2*4], xmm0
 pxor xmm2, xmm7
 movlps qword ptr [ecx*8+4*4], xmm2

 movdqa xmm0, [edi+edx*4-1*3*4-4] // xmm0 = 8, 9, 10, 11
 paddd xmm0, xmm0
 shufps xmm3, xmm0, R_SHUFFLE_D(2, 3, 0, 1) // xmm3 = 6, 7, 8, 9
 pshufd xmm1, xmm3, R_SHUFFLE_D(2, 1, 0, 0) // xmm1 = 8, 7, 6, 6
 movzx ecx, byte ptr [esi+eax-2]
 pshufd xmm2, xmm3, R_SHUFFLE_D(1, 2, 1, 2) // xmm2 = 7, 8, 7, 8
 sub ecx, 1
 pxor xmm1, xmm6
 and ecx, 3
 movlps qword ptr [ebx*8+0*4], xmm1
 add ecx, ebx

 movhps qword ptr [ebx*8+2*4], xmm1
 pxor xmm2, xmm7
 movlps qword ptr [ebx*8+4*4], xmm2

 pshufd xmm1, xmm0, R_SHUFFLE_D(3, 2, 1, 1)
 movzx ebx, byte ptr [esi+eax-1]
 pshufd xmm2, xmm0, R_SHUFFLE_D(2, 3, 2, 3)
 sub ebx, 1
 pxor xmm1, xmm6
 and ebx, 3
 movlps qword ptr [ecx*8+0*4], xmm1
 add ebx, ecx
 movhps qword ptr [ecx*8+2*4], xmm1
 pxor xmm2, xmm7
 movlps qword ptr [ecx*8+4*4], xmm2

 add edx, 3*4
 add eax, 4
 jle loop4

 run1:
 sub eax, 4
 jge done

 loop1:
 lea edx, [eax*2+eax]
 movdqu xmm0, [edi+edx*4+0]
 paddd xmm0, xmm0
 pshufd xmm1, xmm0, R_SHUFFLE_D(2, 1, 0, 0)
 pshufd xmm2, xmm0, R_SHUFFLE_D(1, 2, 1, 2)
 pxor xmm1, xmm6
 movlps qword ptr [ebx*8+0*4], xmm1
 pxor xmm2, xmm7
 movhps qword ptr [ebx*8+2*4], xmm1
 movzx ecx, byte ptr [esi+eax]
 movlps qword ptr [ebx*8+4*4], xmm2
 sub ecx, 1
 and ecx, 3
 add ebx, ecx

 add eax, 1
 jl loop1

 done:
 shl ebx, 3
 mov num, ebx
 pop ebx
 }

 return (num - (int)shadowIndexes) >> 2;
}

	Abstract
	Introduction
	Previous Work
	Layout

	Shadow Volumes
	Creating Shadow Volumes
	Counting Facing Triangles
	Counting Facing Triangles With Culling
	Creating Silhouette Triangles
	Creating Cap Triangles
	Results
	Conclusion
	References
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Shadow Volume Construction.pdf
	Abstract
	1. Introduction
	1.1 Previous Work
	1.2 Layout

	2. Shadow Volumes
	3. Creating Shadow Volumes
	4. Counting Facing Triangles
	5. Counting Facing Triangles With Culling
	6. Creating Silhouette Triangles
	7. Creating Cap Triangles
	8. Results
	9. Conclusion
	10. References
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F

