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Abstract  
Optimized routines for the conversion between quaternions and matrices are presented. 

First the regular C/C++ routines presented in literature are optimized and/or 

restructured to make it easier for the compiler to generate optimized assembler code. 

Next the best approach to SIMD is determined and the SIMD optimizations are partially 

prototyped in regular C/C++ code. Finally the Intel Streaming SIMD Extensions are 

used to get the most out of every clock cycle.  

1. Introduction  
Quaternions are often used in skeletal animation systems for the interpolation between 

general rotations. When interpolating between animation key frames quaternions 

provide an efficient means to interpolate the general rotations of joints in a skeleton. 

However, matrices are more efficient when many points or vertices need to be 

transformed, and the joints in a skeleton typically transform many vertices of a 

polygonal mesh. As such the desire arises to convert quaternions to matrices. 

Sometimes it may also be desired to modify a skeleton using matrices. Therefore it may 

also be useful to convert matrices to quaternions.  

1.1 Previous Work  

The quaternion was first introduced by Will iam Rowan Hamilton (1805 - 1865) as a 

successor to complex numbers [1]. Arthur Cayley (1821 - 1895) contributed further by 

describing rotations with quaternion multiplication [2]. Ken Shoemake popularized 

quaternions in the world of computer graphics [6]. Quaternions have since found their 

way into many different systems among which animation, inverse kinematics and 

physics.  

In skeletal animation systems quaternions are often used to interpolate between joint 

orientations specified with key frames or animation curves [7,9,10]. On the other hand 

rotation matrices are often used when many points in space need to be transformed like 

the vertices of the skin of an animated model. Rotation matrices are typically more 

efficient on today's hardware when many positions need to be transformed. Because 

both quaternions and rotation matrices are useful and efficient for certain calculations 

the desire arises to convert between these representations. These conversions were 

introduced by Ken Shoemake [6,7,8] in the context of computer graphics.  



1.2 Layout  

Section 2 shows some properties of quaternions and rotation matrices. Section 3 

describes the conversion from joint quaternions to joint matrices. The conversion from 

joint matrices to joint quaternions is presented in section 4. The results of the 

optimizations are presented in section 5 and several conclusions are drawn in section 6.  

2. Quaternions and Rotation Matrices.  
The unit quaternion sphere is equivalent to the space of general rotations. Throughout 

this article quaternions will represent general rotations. The four components of a 

quaternion are denoted (x, y, z, w) and the quaternion will be represented in code as 

follows.  

struct Quaternion { 
    float       x, y, z, w;
}; 

A quaternion (x, y, z, w) which represents a general rotation can be interpreted 

geometrically as follows.  

x = X · sin( α / 2 ) 

y = Y · sin( α / 2 ) 
z = Z · sin( α / 2 ) 

w = cos( α / 2 ) 

Here (X, Y, Z) is the unit length axis of rotation in 3D space and α is the angle of 

rotation about the axis in radians.  

A general rotation can also be defined with a 3x3 orthonormal matrix. Each row and 

each column of the matrix is a 3D vector of unit length. The rows of the matrix are 

orthogonal to each other and the same goes for the columns.  

Quaternions and rotation matrices are often used in skeletal animation systems to 

describe the orientation and translation of joints in a skeleton. Joints using a 

quaternion for the orientation will be represented in code as follows.  

struct Vec4 { 
    float       x, y, z, w;
}; 
 
struct JointQuat { 
    Quaternion  q; 
    Vec4        t; 
}; 

Joints using a rotation matrix for the orientation will be represented in code as follows.  

 

struct JointMat { 
    float       mat[3*4]; 
}; 

This is a 3x4 matrix where the first three elements of each row are from a row-major 

rotation matrix and the last element of every row is the translation over one axis.  



3. Quaternion to Matrix  
For the quaternion (x, y, z, w) the corresponding rotation matrix M is defined as follows 

[6].  

  1 - 2y² - 2z²       2xy + 2wz        2xz - 2wy    

  2xy - 2wz        1 - 2x² - 2z²       2yz + 2wx    M =     

  2xz + 2wy        2yz - 2wx        1 - 2x² - 2y²   

By grouping the common products the joint quaternion to joint matrix conversion can be 

implemented as follows.  

void ConvertJointQuatsToJointMats( JointMat *jointMats, const JointQuat *jointQuats, const int numJoints ) {
 
    for ( int i = 0; i < numJoints; i++ ) { 
        const float *q = &jointQuats[i].q; 
        float *m = jointMats[i].mat; 
 
        m[0*4+3] = q[4]; 
        m[1*4+3] = q[5]; 
        m[2*4+3] = q[6]; 
 
        float x2 = q[0] + q[0]; 
        float y2 = q[1] + q[1]; 
        float z2 = q[2] + q[2]; 
        { 
            float xx2 = q[0] * x2; 
            float yy2 = q[1] * y2; 
            float zz2 = q[2] * z2; 
 
            m[0*4+0] = 1.0f - yy2 - zz2; 
            m[1*4+1] = 1.0f - xx2 - zz2; 
            m[2*4+2] = 1.0f - xx2 - yy2; 
        } 
        { 
            float yz2 = q[1] * z2; 
            float wx2 = q[3] * x2; 
 
            m[2*4+1] = yz2 - wx2; 
            m[1*4+2] = yz2 + wx2; 
        } 
        { 
            float xy2 = q[0] * y2; 
            float wz2 = q[3] * z2; 
 
            m[1*4+0] = xy2 - wz2; 
            m[0*4+1] = xy2 + wz2; 
        } 
        { 
            float xz2 = q[0] * z2; 
            float wy2 = q[3] * y2; 
 
            m[0*4+2] = xz2 - wy2; 
            m[2*4+0] = xz2 + wy2; 
        } 
    } 
} 

The above routine localizes variable dependencies with additional braces to make it 

easier for the compiler to produce optimized FPU code.  

One thing becomes immediately apparent when examining the above routine. The 

number of mathematical operations is minimal compared to the number of data move 

operations. Furthermore the way the quaternion components are scattered into a matrix 

makes it hard to exploit parallelism through increased throughput. The required swizzle 

of the quaternion components and de-swizzle of the calculated matrix elements easily 



nullifies any gain from executing four operations at once for the few mathematical 

operations used in the conversion.  

Instead of exploiting parallelism through increased throughput, parallelism can also be 

exploited with a compressed calculation. As it turns out it is not that hard to find 

common operations that can be executed in parallel, but it is not trivial to arrange them 

in such a way that consecutive operations in the conversion can be executed with SIMD 

instructions without requiring excessive swizzling. However, the following prototype can 

be constructed which has several advantageous properties.  

void ConvertJointQuatsToJointMats( JointMat *jointMats, const JointQuat *jointQuats, const int numJoints ) {
 
    for ( int i = 0; i < numJoints; i++ ) { 
        const float *q = &jointQuats[i].q; 
        float *m = jointMats[i].mat; 
 
        float x2 = q[0] + q[0]; 
        float y2 = q[1] + q[1]; 
        float z2 = q[2] + q[2]; 
        float w2 = q[3] + q[3]; 
 
        float yy2 = q[1] * y2; 
        float xy2 = q[0] * y2; 
        float xz2 = q[0] * z2; 
        float yz2 = q[1] * z2; 
 
        float zz2 = q[2] * z2; 
        float wz2 = q[3] * z2; 
        float wy2 = q[3] * y2; 
        float wx2 = q[3] * x2; 
 
        float xx2 = q[0] * x2; 
 
        m[0*4+0] = - yy2 - zz2 + 1.0f; 
        m[0*4+1] =   xy2 + wz2; 
        m[0*4+2] =   xz2 - wy2; 
        m[0*4+3] = q[4]; 
 
        m[1*4+0] =   xy2 - wz2; 
        m[1*4+1] = - xx2 - zz2 + 1.0f; 
        m[1*4+2] =   yz2 + wx2; 
        m[1*4+3] = q[5]; 
 
        m[2*4+0] =   xz2 + wy2; 
        m[2*4+1] =   yz2 - wx2; 
        m[2*4+2] = - xx2 - yy2 + 1.0f; 
        m[2*4+3] = q[6]; 
    } 
} 

The above routine should not be used as a replacement for the former routine because 

it is significantly slower when compiled to FPU code. However, the above routine does 

provide a good starting point for an SSE optimized version.  

The conversion counts 9 multiplications that can be executed with three SSE 

instructions. Because of the way the multiplications are arranged in the above routine, 

the first row of the matrix can be calculated directly from the first 8 products. The 

second row can be calculated by replacing one of the first 8 products with the 9th 

product. As such the swizzling required during the conversion is minimized. Because the 

elements of the first two rows are calculated by adding and subtracting products, the 

sign of some of the products is changed with the 'xorps' instruction which allows a 

single 'subps' instruction to be used per row. Only the first three elements of the first 

two rows are calculated from the 9 products. Because of the way the products are 

arranged the 'subps' instructions used for the first two rows also calculate two elements 

for the last row in the fourth elements of the SSE registers. The last diagonal element 



is then calculated separately and combined with these fourth elements to form the third 

row.  

The complete SSE optimized code for the conversion can be found in appendix A. The 

code assumes that both the list with joints and the list with matrices are at least 16 

byte aligned.  

The SSE2 instruction 'pshufd' is used to swizzle the quaternion components before 

multiplying them. This instruction is meant to be used for double word integer data. 

However, since every 32 bits floating point bit pattern represents a valid integer this 

instruction can be used on floating point data without problems. The advantage of using 

the 'pshufd' instruction is that the complete contents of one SSE register can be copied 

and swizzled into another SSE register.  

4. Matrix to Quaternion  
Converting a rotation matrix to a quaternion is a bit more challenging. The quaternion 

components always appear in pairs in the rotation matrix and some manipulation is 

required to extract them. To avoid sign loss only one component of the quaternion is 

extracted using the diagonal and divided into cross-diagonal sums. The algorithm avoids 

precision loss due to near-zero divides by looking for a component of large magnitude 

as divisor, first w, then x, y, or z. When the trace of the matrix (sum of diagonal 

elements) is greater than zero, |w| is greater than 1/2, which is as small as the largest 

component can be. Otherwise, the largest diagonal element corresponds to the largest 

of |x|, |y|, or |z|, one of which must be larger than |w|, and at least 1/2. The following 

routine converts JointQuats to JointMats using the quaternion to matrix conversion.  

float ReciprocalSqrt( float x ) { 
    long i; 
    float y, r; 
 
    y = x * 0.5f; 
    i = *(long *)( &x ); 
    i = 0x5f3759df - ( i >> 1 ); 
    r = *(float *)( &i ); 
    r = r * ( 1.5f - r * r * y ); 
    return r; 
} 
 
void ConvertJointMatsToJointQuats( JointQuat *jointQuats, const JointMat *jointMats, const int numJoints ) {
 
    for ( int i = 0; i < numJoints; i++ ) { 
 
        float *q = &jointQuats[i].q; 
        const float *m = jointMats[i].mat; 
 
        if ( m[0 * 4 + 0] + m[1 * 4 + 1] + m[2 * 4 + 2] > 0.0f ) { 
 
            float t = + m[0 * 4 + 0] + m[1 * 4 + 1] + m[2 * 4 + 2] + 1.0f; 
            float s = ReciprocalSqrt( t ) * 0.5f; 
 
            q[3] = s * t; 
            q[2] = ( m[0 * 4 + 1] - m[1 * 4 + 0] ) * s; 
            q[1] = ( m[2 * 4 + 0] - m[0 * 4 + 2] ) * s; 
            q[0] = ( m[1 * 4 + 2] - m[2 * 4 + 1] ) * s; 
 
        } else if ( m[0 * 4 + 0] > m[1 * 4 + 1] && m[0 * 4 + 0] > m[2 * 4 + 2] ) { 
 
            float t = + m[0 * 4 + 0] - m[1 * 4 + 1] - m[2 * 4 + 2] + 1.0f; 
            float s = ReciprocalSqrt( t ) * 0.5f; 
 
            q[0] = s * t; 
            q[1] = ( m[0 * 4 + 1] + m[1 * 4 + 0] ) * s; 



            q[2] = ( m[2 * 4 + 0] + m[0 * 4 + 2] ) * s; 
            q[3] = ( m[1 * 4 + 2] - m[2 * 4 + 1] ) * s; 
 
        } else if ( m[1 * 4 + 1] > m[2 * 4 + 2] ) { 
 
            float t = - m[0 * 4 + 0] + m[1 * 4 + 1] - m[2 * 4 + 2] + 1.0f; 
            float s = ReciprocalSqrt( t ) * 0.5f; 
 
            q[1] = s * t; 
            q[0] = ( m[0 * 4 + 1] + m[1 * 4 + 0] ) * s; 
            q[3] = ( m[2 * 4 + 0] - m[0 * 4 + 2] ) * s; 
            q[2] = ( m[1 * 4 + 2] + m[2 * 4 + 1] ) * s; 
 
        } else { 
 
            float t = - m[0 * 4 + 0] - m[1 * 4 + 1] + m[2 * 4 + 2] + 1.0f; 
            float s = ReciprocalSqrt( t ) * 0.5f; 
 
            q[2] = s * t; 
            q[3] = ( m[0 * 4 + 1] - m[1 * 4 + 0] ) * s; 
            q[0] = ( m[2 * 4 + 0] + m[0 * 4 + 2] ) * s; 
            q[1] = ( m[1 * 4 + 2] + m[2 * 4 + 1] ) * s; 
 
        } 
 
        q[4] = m[0 * 4 + 3]; 
        q[5] = m[1 * 4 + 3]; 
        q[6] = m[2 * 4 + 3]; 
        q[7] = 0.0f; 
    } 
} 

The above routine may appear to be quite different from the commonly used 

implementation as presented by Ken Shoemake [6]. However, the above routine just 

unrolls the four cases for the different divisors. The routine is typically faster because it 

does not use any variable indexing into arrays. The above routine also uses a fast 

reciprocal square root approximation [14,15,16].  

When examining the above code a key observation can be made. The code for each of 

the four cases is almost the same. The only differences are a couple of signs and the 

order in which the components of the quaternion are stored. To emphasize these 

differences the above routine can be rewritten to the following routine.  

void ConvertJointMatsToJointQuats( JointQuat *jointQuats, const JointMat *jointMats, const int numJoints ) {
 
    for ( int i = 0; i < numJoints; i++ ) { 
        float s0, s1, s2; 
        int k0, k1, k2, k3; 
 
        float *q = &jointQuats[i].q; 
        const float *m = jointMats[i].mat; 
 
        if ( m[0 * 4 + 0] + m[1 * 4 + 1] + m[2 * 4 + 2] > 0.0f ) { 
 
            k0 = 3; 
            k1 = 2; 
            k2 = 1; 
            k3 = 0; 
            s0 = 1.0f; 
            s1 = 1.0f; 
            s2 = 1.0f; 
 
        } else if ( m[0 * 4 + 0] > m[1 * 4 + 1] && m[0 * 4 + 0] > m[2 * 4 + 2] ) { 
 
            k0 = 0; 
            k1 = 1; 
            k2 = 2; 
            k3 = 3; 
            s0 = 1.0f; 
            s1 = -1.0f; 
            s2 = -1.0f; 
 
        } else if ( m[1 * 4 + 1] > m[2 * 4 + 2] ) { 
 



            k0 = 1; 
            k1 = 0; 
            k2 = 3; 
            k3 = 2; 
            s0 = -1.0f; 
            s1 = 1.0f; 
            s2 = -1.0f; 
 
        } else { 
 
            k0 = 2; 
            k1 = 3; 
            k2 = 0; 
            k3 = 1; 
            s0 = -1.0f; 
            s1 = -1.0f; 
            s2 = 1.0f; 
 
        } 
 
        float t = s0 * m[0 * 4 + 0] + s1 * m[1 * 4 + 1] + s2 * m[2 * 4 + 2] + 1.0f; 
        float s = ReciprocalSqrt( t ) * 0.5f; 
 
        q[k0] = s * t; 
        q[k1] = ( m[0 * 4 + 1] - s2 * m[1 * 4 + 0] ) * s; 
        q[k2] = ( m[2 * 4 + 0] - s1 * m[0 * 4 + 2] ) * s; 
        q[k3] = ( m[1 * 4 + 2] - s0 * m[2 * 4 + 1] ) * s; 
 
        q[4] = m[0 * 4 + 3]; 
        q[5] = m[1 * 4 + 3]; 
        q[6] = m[2 * 4 + 3]; 
        q[7] = 0.0f; 
    } 
} 

In the above code each case sets 4 indices (k0, k1, k2, k3) and three sign multipliers 

(s0, s1, s2). The indices are used to determine the order in which the different 

quaternion components are stored and the sign multipliers are used to change the signs 

in the calculation. The above routine should not be used as a replacement for the 

former routine because it is significantly slower when compiled to FPU code. However, 

the above routine does provide a blue print for an SSE optimized version.  

The best approach to SIMD for the joint matrix to joint quaternion conversion is to 

exploit parallelism through increased throughput. The routine presented here will 

operate on four conversion per iteration and the scalar instructions are replaced with 

functionally equivalent SSE instructions. This requires a swizzle because the matrices 

are stored per joint while some of the individual elements of four matrices need to be 

grouped into SSE registers. Furthermore the conditionally executed code for the four 

different cases has to be replaced with a single sequence of instructions for all cases.  

The initial swizzle loads the diagonal elements of four matrices into three SSE registers. 

The swizzle loads one element at a time and shuffles it into one of the SSE registers. 

The diagonal elements are stored in the xmm5, xmm6 and xmm7 register. Based on the 

diagonal elements the three conditions are evaluated and the results are stored in the 

xmm0, xmm2, and xmm4 register as follows:  

movaps      xmm0, xmm5 
addps       xmm0, xmm6 
addps       xmm0, xmm7 
cmpnltps    xmm0, SIMD_SP_zero    // xmm0 = m[0 * 4 + 0] + m[1 * 4 + 1] + m[2 * 4 + 2] > 0.0f 
 
movaps      xmm1, xmm5 
movaps      xmm2, xmm5 
cmpnltps    xmm1, xmm6 
cmpnltps    xmm2, xmm7 
andps       xmm2, xmm1            // xmm2 = m[0 * 4 + 0] > m[1 * 4 + 1] && m[0 * 4 + 0] > m[2 * 4 + 2]
 



movaps      xmm4, xmm6 
cmpnltps    xmm4, xmm7            // xmm4 = m[1 * 4 + 1] > m[2 * 4 + 2] 

From the three conditions four masks are calculated for the four cases. These masks are 

stored in the xmm0, xmm1, xmm2 and xmm3 register. Based on the chosen divisor only 

one of these registers will be fi l led with all one bits and the other registers will be all 

zeros. The masks are calculated as follows.  

movaps      xmm1, xmm0 
andnps      xmm1, xmm2 
orps        xmm2, xmm0 
movaps      xmm3, xmm2 
andnps      xmm2, xmm4 
orps        xmm3, xmm2 
xorps       xmm3, SIMD_SP_not 

The components of a quaternion are stored in a different order based on the chosen 

divisor. The indices k0 through k3 in the C/C++ blue print basically specify a swizzle to 

store the components of a quaternion. The correct swizzle corresponding to the chosen 

divisor can be selected using the four masks calculated above. The four different 

swizzles are stored as 8 bit indices in 16 byte constants as follows.  

#define ALIGN4_INIT1( X, I ) __declspec(align(16)) static X[4] = { I, I, I, I } 
 
ALIGN4_INIT1( unsigned long SIMD_DW_mat2quatShuffle0, (3<<0)|(2<<8)|(1<<16)|(0<<24) ); 
ALIGN4_INIT1( unsigned long SIMD_DW_mat2quatShuffle1, (0<<0)|(1<<8)|(2<<16)|(3<<24) ); 
ALIGN4_INIT1( unsigned long SIMD_DW_mat2quatShuffle2, (1<<0)|(0<<8)|(3<<16)|(2<<24) ); 
ALIGN4_INIT1( unsigned long SIMD_DW_mat2quatShuffle3, (2<<0)|(3<<8)|(0<<16)|(1<<24) ); 

One of the swizzles can be selected by using a binary 'and' of each of the above swizzle 

constants with one of the four masks and using a binary 'or' on the results. The 

following SSE code selects one of the swizzles for each of the four conversions and 

stores the result in a local byte array called 'shuffle'.  

ALIGN16( byte shuffle[16]; ) 
 
andps       xmm0, SIMD_DW_mat2quatShuffle0
movaps      xmm4, xmm1 
andps       xmm4, SIMD_DW_mat2quatShuffle1
orps        xmm0, xmm4 
movaps      xmm4, xmm2 
andps       xmm4, SIMD_DW_mat2quatShuffle2
orps        xmm0, xmm4 
movaps      xmm4, xmm3 
andps       xmm4, SIMD_DW_mat2quatShuffle3
orps        xmm4, xmm0 
movaps      shuffle, xmm4 

Next to the swizzle the three signs for each of the four cases need to be calculated as 

well. The following SSE code calculates sign bits from the four masks for the four 

conversions and stores them in the xmm0, xmm1 and xmm2 register.  

ALIGN4_INIT1( unsigned long SIMD_SP_signBit, IEEE_SP_SIGN ); 
 
movaps      xmm0, xmm2 
orps        xmm0, xmm3                  // xmm0 = xmm2 | xmm3   = s0
orps        xmm2, xmm1                  // xmm2 = xmm1 | xmm2   = s2
orps        xmm1, xmm3                  // xmm1 = xmm1 | xmm3   = s1
andps       xmm0, SIMD_SP_signBit 
andps       xmm1, SIMD_SP_signBit 
andps       xmm2, SIMD_SP_signBit 

The scalar instructions of the first part of the conversion can now be replaced with 

functionally equivalent SSE instructions. The 'xorps' instruction can be used with the 



three sign bits for each of the four conversions to fl ip the signs of some of the matrix 

elements.  

Intel SSE instruction set has an instruction to calculate the reciprocal square root with 

12 bits of precision. A simple Newton-Rapson iteration can be used to improve the 

accuracy [17]. The following assembler code calculates the reciprocal square root of the 

four floating point numbers stored in the 'xmm5' register. The result is stored in the 

'xmm6' register.  

ALIGN4_INIT1( float SIMD_SP_rsqrt_c0,  3.0f );
ALIGN4_INIT1( float SIMD_SP_rsqrt_c1, -0.5f );
 
rsqrtps     xmm6, xmm5 
mulps       xmm5, xmm6 
mulps       xmm5, xmm6 
subps       xmm5, SIMD_SP_rsqrt_c0 
mulps       xmm6, SIMD_SP_rsqrt_c1 
mulps       xmm6, xmm5 

The conversion uses the reciprocal square root multiplied with a half. As such the 

second constant of the Newton-Rapson iteration is pre-multiplied with a half to get half 

the reciprocal square root at no additional cost.  

ALIGN4_INIT1( float SIMD_SP_rsqrt_c0,  3.0f ); 
ALIGN4_INIT1( float SIMD_SP_mat2quat_rsqrt_c1, -0.5f * 0.5f );
 
rsqrtps     xmm6, xmm5 
mulps       xmm5, xmm6 
mulps       xmm5, xmm6 
subps       xmm5, SIMD_SP_rsqrt_c0 
mulps       xmm6, SIMD_SP_mat2quat_rsqrt_c1 
mulps       xmm6, xmm5 

SSE scalar code is used for the last part of the conversion that uses the off-diagonal 

elements of the matrix. For this part of the conversion it does not pay off to use SIMD 

instructions because the swizzle and de-swizzle required to pack and unpack the off-

diagonal elements would nullify any gains from executing four operations at once.  

To store the components of the quaternion the 'shuffle' byte array is used to get the 

correct index for the chosen divisor. The index is loaded into a general purpose register 

and used to get the address of the quaternion component.  

movzx       ecx, byte ptr shuffle[0*4+0]            // ecx = k0 
movss       [edi+ecx*4-4*JOINTQUAT_SIZE], xmm7      // q[k0] = s * t;

The complete routine for the conversion from joint matrices to joint quaternions is 

listed in appendix B. The code makes no assumptions about alignment but for the best 

performance the list with matrices and the list with joints should be at least 16 byte 

aligned.  

5. Results  
The various routines have been tested on an Intel® Pentium® 4 Processor on 130nm 

Technology and an Intel® Pentium® 4 Processor on 90nm Technology. The routines 

operated on a list of 1024 joints. The total number of clock cycles and the number of 

clock cycles per joint for each routine on the different CPUs are listed in the following 

table.  

 



Hot Cache Clock Cycle Counts 

Routine 
P4 130nm total   

clock cycles 
P4 130nm clock cycles 

per element 
P4 90nm total   

clock cycles 
P4 90nm clock cycles per 

element 

ConvertJointQuatsToJointMats (C) 
  

55528 54 63279 62 

ConvertJointQuatsToJointMats 
(SSE)   

30916 30 34362 34 

ConvertJointMatsToJointQuats (C) 
  

176332 172 176553 173 

ConvertJointMatsToJointQuats 
(SSE)   62460 61 73710 72 

6. Conclusion  
Two optimized conversions were presented, from joint quaternion to joint matrix and 

from joint matrix to joint quaternion. Each of the conversions uses a different approach 

to SIMD. The optimized conversion from joint quaternion to joint matrix uses a 

compressed calculation. The optimized conversion from joint matrix to joint quaternion 

exploits parallelism through increased throughput.  

For both conversions the SIMD optimized routines were first prototyped using regular 

C/C++. Rewriting the C/C++ code often helps to analyze the algorithm and to decide 

upon the best approach to exploiting parallelism with SIMD code.  

Optimizing the conversions turned out to be not quite trivial but after giving it some 

thought the results are quite satisfying. The SSE optimized conversion from joint 

quaternion to joint matrix consumes over 44% less clock cycles than the optimized C 

version. The SSE optimized conversion from joint matrix to joint quaternion is more 

than two times faster than the optimized C version.  
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Appendix A  
/* 
    SSE Optimized Quaternion to Matrix Conversion 
    Copyright (C) 2005 Id Software, Inc. 
    Written by J.M.P. van Waveren 
 
    This code is free software; you can redistribute it and/or 
    modify it under the terms of the GNU Lesser General Public 
    License as published by the Free Software Foundation; either 
    version 2.1 of the License, or (at your option) any later version. 
 
    This code is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
    Lesser General Public License for more details. 
*/ 
 
#define assert_16_byte_aligned( pointer )   assert( (((UINT_PTR)(pointer))&15) == 0 ); 
#define ALIGN16( x )                        __declspec(align(16)) x 
#define ALIGN4_INIT1( X, I )                ALIGN16( static X[4] = { I, I, I, I } ) 
#define R_SHUFFLE_PS( x, y, z, w )          (( (w) & 3 ) << 6 | ( (z) & 3 ) << 4 | ( (y) & 3 ) << 2 | ( (x) & 3 )) 
 
#define IEEE_SP_ZERO                        0 
#define IEEE_SP_SIGN                        ((unsigned long) ( 1 << 31 )) 
 
ALIGN4_INIT4( unsigned long SIMD_SP_quat2mat_x0, IEEE_SP_ZERO, IEEE_SP_SIGN, IEEE_SP_SIGN, IEEE_SP_SIGN ); 
ALIGN4_INIT4( unsigned long SIMD_SP_quat2mat_x1, IEEE_SP_SIGN, IEEE_SP_ZERO, IEEE_SP_SIGN, IEEE_SP_SIGN ); 
ALIGN4_INIT4( unsigned long SIMD_SP_quat2mat_x2, IEEE_SP_ZERO, IEEE_SP_SIGN, IEEE_SP_SIGN, IEEE_SP_SIGN ); 
 
struct Quaternion { 
    float       x, y, z, w; 
}; 
 
struct Vec4 { 
    float       x, y, z, w; 
}; 
 
struct JointQuat { 
    Quaternion  q; 
    Vec4        t; 
}; 
 
struct JointMat { 
    float       mat[3*4]; 
}; 
 
#define JOINTQUAT_SIZE          (8*4) 
#define JOINTQUAT_SIZE_SHIFT    (5) 
#define JOINTQUAT_Q_OFFSET      (0*4) 
#define JOINTQUAT_T_OFFSET      (4*4) 
#define JOINTMAT_SIZE           (4*3*4) 
 
void ConvertJointQuatsToJointMats( JointMat *jointMats, const JointQuat *jointQuats, const int numJoints ) { 
 
    assert_16_byte_aligned( jointMats ); 
    assert_16_byte_aligned( jointQuats ); 
 
    __asm { 
        mov         eax, numJoints 
        shl         eax, JOINTQUAT_SIZE_SHIFT 
        mov         esi, jointQuats 
        mov         edi, jointMats 
 
        add         esi, eax 
        neg         eax 
        jz          done 
 
    loopQuat: 
        movaps      xmm0, [esi+eax+JOINTQUAT_Q_OFFSET]      // xmm0 =  q.x,  q.y,  q.z,  q.w 
        movaps      xmm6, [esi+eax+JOINTQUAT_T_OFFSET]      // xmm6 =  t.x,  t.y,  t.z,  t.w 
 
        add         edi, JOINTMAT_SIZE 
 
        movaps      xmm1, xmm0                              // xmm1 =    x,    y,    z,    w 
        addps       xmm1, xmm1                              // xmm1 =   x2,   y2,   z2,   w2 
 
        add         eax, JOINTQUAT_SIZE 
 
        // calculate the 9 products 



        pshufd      xmm2, xmm0, R_SHUFFLE_D( 1, 0, 0, 1 )   // xmm2 =    y,    x,    x,    y 
        pshufd      xmm3, xmm1, R_SHUFFLE_D( 1, 1, 2, 2 )   // xmm3 =   y2,   y2,   z2,   z2 
        mulps       xmm2, xmm3                              // xmm2 =  yy2,  xy2,  xz2,  yz2 
 
        pshufd      xmm4, xmm0, R_SHUFFLE_D( 2, 3, 3, 3 )   // xmm4 =    z,    w,    w,    w 
        pshufd      xmm5, xmm1, R_SHUFFLE_D( 2, 2, 1, 0 )   // xmm5 =   z2,   z2,   y2,   x2 
        mulps       xmm4, xmm5                              // xmm4 =  zz2,  wz2,  wy2,  wx2 
 
        mulss       xmm0, xmm1                              // xmm0 =  xx2,   y2,   z2,   w2 
 
        // calculate the last two elements of the third row 
        movss       xmm7, SIMD_SP_one                       // xmm7 =          1,          0,          0,       0 
        subss       xmm7, xmm0                              // xmm7 =     -xx2+1,          0,          0,       0 
        subss       xmm7, xmm2                              // xmm7 = -xx2-yy2+1,          0,          0,       0 
        shufps      xmm7, xmm6, R_SHUFFLE_PS( 0, 1, 2, 3 )  // xmm7 = -xx2-yy2+1,          0,        t.z,     t.w 
 
        // calcluate first row 
        xorps       xmm2, SIMD_SP_quat2mat_x0               // xmm2 =        yy2,       -xy2,       -xz2,    -yz2 
        xorps       xmm4, SIMD_SP_quat2mat_x1               // xmm4 =       -zz2,        wz2,       -wy2,    -wx2 
        addss       xmm4, SIMD_SP_one                       // xmm4 =     -zz2+1,        wz2,       -wy2,    -wx2 
        movaps      xmm3, xmm4                              // xmm3 =     -zz2+1,        wz2,       -wy2,    -wx2 
        subps       xmm3, xmm2                              // xmm3 = -yy2-zz2+1,    xy2+wz2,    xz2-wy2, yz2-wx2 
        movaps      [edi-JOINTMAT_SIZE+0*16+0*4], xmm3      // row0 = -yy2-zz2+1,    xy2+wz2,    xz2-wy2, yz2-wx2 
        movss       [edi-JOINTMAT_SIZE+0*16+3*4], xmm6      // row0 = -yy2-zz2+1,    xy2+wz2,    xz2-wy2,     t.x 
 
        // calculate second row 
        movss       xmm2, xmm0                              // xmm2 =        xx2,       -xy2,       -xz2,    -yz2 
        xorps       xmm4, SIMD_SP_quat2mat_x2               // xmm4 =     -zz2+1,       -wz2,        wy2,     wx2 
        subps       xmm4, xmm2                              // xmm4 = -xx2-zz2+1,    xy2-wz2,    xz2+wy2, yz2+wx2 
        shufps      xmm6, xmm6, R_SHUFFLE_PS( 1, 2, 3, 0 )  // xmm6 =        t.y,        t.z,        t.w,     t.x 
        shufps      xmm4, xmm4, R_SHUFFLE_PS( 1, 0, 3, 2 )  // xmm4 =    xy2-wz2, -xx2-zz2+1,    yz2+wx2, xz2+wy2 
        movaps      [edi-JOINTMAT_SIZE+1*16+0*4], xmm4      // row1 =    xy2-wz2, -xx2-zz2+1,    yz2+wx2, xz2+wy2 
        movss       [edi-JOINTMAT_SIZE+1*16+3*4], xmm6      // row1 =    xy2-wz2, -xx2-zz2+1,    yz2+wx2,     t.y 
 
        // calculate third row 
        movhlps     xmm3, xmm4                              // xmm3 =    yz2+wx2,    xz2+wy2,    xz2-wy2, yz2-wx2 
        shufps      xmm3, xmm7, R_SHUFFLE_PS( 1, 3, 0, 2 )  // xmm3 =    xz2+wy2,    yz2-wx2, -xx2-yy2+1,     t.z 
        movaps      [edi-JOINTMAT_SIZE+2*16+0*4], xmm3      // row2 =    xz2+wy2,    yz2-wx2, -xx2-yy2+1,     t.z 
 
        jl          loopQuat 
 
    done: 
    } 
} 

Appendix B  
/* 
    SSE Optimized Matrix to Quaternion Conversion 
    Copyright (C) 2005 Id Software, Inc. 
    Written by J.M.P. van Waveren 
 
    This code is free software; you can redistribute it and/or 
    modify it under the terms of the GNU Lesser General Public 
    License as published by the Free Software Foundation; either 
    version 2.1 of the License, or (at your option) any later version. 
 
    This code is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
    Lesser General Public License for more details. 
*/ 
 
ALIGN4_INIT1( unsigned long SIMD_SP_signBit, IEEE_SP_SIGN ); 
ALIGN4_INIT1( unsigned long SIMD_SP_not, 0xFFFFFFFF ); 
 
ALIGN4_INIT1( unsigned long SIMD_DW_mat2quatShuffle0, (3<<0)|(2<<8)|(1<<16)|(0<<24) ); 
ALIGN4_INIT1( unsigned long SIMD_DW_mat2quatShuffle1, (0<<0)|(1<<8)|(2<<16)|(3<<24) ); 
ALIGN4_INIT1( unsigned long SIMD_DW_mat2quatShuffle2, (1<<0)|(0<<8)|(3<<16)|(2<<24) ); 
ALIGN4_INIT1( unsigned long SIMD_DW_mat2quatShuffle3, (2<<0)|(3<<8)|(0<<16)|(1<<24) ); 
 
ALIGN4_INIT1( float SIMD_SP_zero, 0.0f ); 
ALIGN4_INIT1( float SIMD_SP_one, 1.0f ); 
 
ALIGN4_INIT1( float SIMD_SP_mat2quat_rsqrt_c1, -0.5f * 0.5f ); 
 
ALIGN4_INIT1( float SIMD_SP_rsqrt_c0,  3.0f ); 
ALIGN4_INIT1( float SIMD_SP_rsqrt_c1, -0.5f ); 
 



void ConvertJointMatsToJointQuats( JointQuat *jointQuats, const JointMat *jointMats, const int numJoints ) { 
 
    ALIGN16( byte shuffle[16]; ) 
 
    __asm { 
        mov         eax, numJoints 
        mov         esi, jointMats 
        mov         edi, jointQuats 
        and         eax, ~3 
        jz          done4 
        imul        eax, JOINTMAT_SIZE 
        add         esi, eax 
        neg         eax 
 
    loopMat4: 
        movss       xmm5, [esi+eax+3*JOINTMAT_SIZE+0*16+0*4] 
        movss       xmm6, [esi+eax+3*JOINTMAT_SIZE+1*16+1*4] 
        movss       xmm7, [esi+eax+3*JOINTMAT_SIZE+2*16+2*4] 
 
        shufps      xmm5, xmm5, R_SHUFFLE_PS( 3, 0, 1, 2 ) 
        shufps      xmm6, xmm6, R_SHUFFLE_PS( 3, 0, 1, 2 ) 
        shufps      xmm7, xmm7, R_SHUFFLE_PS( 3, 0, 1, 2 ) 
 
        movss       xmm0, [esi+eax+2*JOINTMAT_SIZE+0*16+0*4] 
        movss       xmm1, [esi+eax+2*JOINTMAT_SIZE+1*16+1*4] 
        movss       xmm2, [esi+eax+2*JOINTMAT_SIZE+2*16+2*4] 
 
        movss       xmm5, xmm0 
        movss       xmm6, xmm1 
        movss       xmm7, xmm2 
 
        shufps      xmm5, xmm5, R_SHUFFLE_PS( 3, 0, 1, 2 ) 
        shufps      xmm6, xmm6, R_SHUFFLE_PS( 3, 0, 1, 2 ) 
        shufps      xmm7, xmm7, R_SHUFFLE_PS( 3, 0, 1, 2 ) 
 
        movss       xmm0, [esi+eax+1*JOINTMAT_SIZE+0*16+0*4] 
        movss       xmm1, [esi+eax+1*JOINTMAT_SIZE+1*16+1*4] 
        movss       xmm2, [esi+eax+1*JOINTMAT_SIZE+2*16+2*4] 
 
        movss       xmm5, xmm0 
        movss       xmm6, xmm1 
        movss       xmm7, xmm2 
 
        shufps      xmm5, xmm5, R_SHUFFLE_PS( 3, 0, 1, 2 ) 
        shufps      xmm6, xmm6, R_SHUFFLE_PS( 3, 0, 1, 2 ) 
        shufps      xmm7, xmm7, R_SHUFFLE_PS( 3, 0, 1, 2 ) 
 
        movss       xmm0, [esi+eax+0*JOINTMAT_SIZE+0*16+0*4] 
        movss       xmm1, [esi+eax+0*JOINTMAT_SIZE+1*16+1*4] 
        movss       xmm2, [esi+eax+0*JOINTMAT_SIZE+2*16+2*4] 
 
        movss       xmm5, xmm0 
        movss       xmm6, xmm1 
        movss       xmm7, xmm2 
 
        // ------------------- 
 
        movaps      xmm0, xmm5 
        addps       xmm0, xmm6 
        addps       xmm0, xmm7 
        cmpnltps    xmm0, SIMD_SP_zero                      // xmm0 = m[0 * 4 + 0] + m[1 * 4 + 1] + m[2 * 4 + 2] > 0.0f 
 
        movaps      xmm1, xmm5 
        movaps      xmm2, xmm5 
        cmpnltps    xmm1, xmm6 
        cmpnltps    xmm2, xmm7 
        andps       xmm2, xmm1                              // xmm2 = m[0 * 4 + 0] > m[1 * 4 + 1] && m[0 * 4 + 0] > m[2 
* 4 + 2] 
 
        movaps      xmm4, xmm6 
        cmpnltps    xmm4, xmm7                              // xmm4 = m[1 * 4 + 1] > m[2 * 4 + 2] 
 
        movaps      xmm1, xmm0 
        andnps      xmm1, xmm2 
        orps        xmm2, xmm0 
        movaps      xmm3, xmm2 
        andnps      xmm2, xmm4 
        orps        xmm3, xmm2 
        xorps       xmm3, SIMD_SP_not 
 
        andps       xmm0, SIMD_DW_mat2quatShuffle0 



        movaps      xmm4, xmm1 
        andps       xmm4, SIMD_DW_mat2quatShuffle1 
        orps        xmm0, xmm4 
        movaps      xmm4, xmm2 
        andps       xmm4, SIMD_DW_mat2quatShuffle2 
        orps        xmm0, xmm4 
        movaps      xmm4, xmm3 
        andps       xmm4, SIMD_DW_mat2quatShuffle3 
        orps        xmm4, xmm0 
 
        movaps      shuffle, xmm4 
 
        movaps      xmm0, xmm2 
        orps        xmm0, xmm3                              // xmm0 = xmm2 | xmm3   = s0 
        orps        xmm2, xmm1                              // xmm2 = xmm1 | xmm2   = s2 
        orps        xmm1, xmm3                              // xmm1 = xmm1 | xmm3   = s1 
 
        andps       xmm0, SIMD_SP_signBit 
        andps       xmm1, SIMD_SP_signBit 
        andps       xmm2, SIMD_SP_signBit 
 
        xorps       xmm5, xmm0 
        xorps       xmm6, xmm1 
        xorps       xmm7, xmm2 
        addps       xmm5, xmm6 
        addps       xmm7, SIMD_SP_one 
        addps       xmm5, xmm7                              // xmm5 = t 
 
        movaps      xmm7, xmm5                              // xmm7 = t 
        rsqrtps     xmm6, xmm5 
        mulps       xmm5, xmm6 
        mulps       xmm5, xmm6 
        subps       xmm5, SIMD_SP_rsqrt_c0 
        mulps       xmm6, SIMD_SP_mat2quat_rsqrt_c1 
        mulps       xmm6, xmm5                              // xmm6 = s 
 
        mulps       xmm7, xmm6                              // xmm7 = s * t 
        xorps       xmm6, SIMD_SP_signBit                   // xmm6 = -s 
 
        // ------------------- 
 
        add         edi, 4*JOINTQUAT_SIZE 
 
        movzx       ecx, byte ptr shuffle[0*4+0]            // ecx = k0 
        movss       [edi+ecx*4-4*JOINTQUAT_SIZE], xmm7      // q[k0] = s * t; 
 
        movzx       edx, byte ptr shuffle[0*4+1]            // edx = k1 
        movss       xmm4, [esi+eax+0*JOINTMAT_SIZE+1*16+0*4] 
        xorps       xmm4, xmm2 
        subss       xmm4, [esi+eax+0*JOINTMAT_SIZE+0*16+1*4] 
        mulss       xmm4, xmm6 
        movss       [edi+edx*4-4*JOINTQUAT_SIZE], xmm4      // q[k1] = ( m[0 * 4 + 1] - s2 * m[1 * 4 + 0] ) * s; 
 
        movzx       ecx, byte ptr shuffle[0*4+2]            // ecx = k2 
        movss       xmm3, [esi+eax+0*JOINTMAT_SIZE+0*16+2*4] 
        xorps       xmm3, xmm1 
        subss       xmm3, [esi+eax+0*JOINTMAT_SIZE+2*16+0*4] 
        mulss       xmm3, xmm6 
        movss       [edi+ecx*4-4*JOINTQUAT_SIZE], xmm3      // q[k2] = ( m[2 * 4 + 0] - s1 * m[0 * 4 + 2] ) * s; 
 
        movzx       edx, byte ptr shuffle[0*4+3]            // edx = k3 
        movss       xmm4, [esi+eax+0*JOINTMAT_SIZE+2*16+1*4] 
        xorps       xmm4, xmm0 
        subss       xmm4, [esi+eax+0*JOINTMAT_SIZE+1*16+2*4] 
        mulss       xmm4, xmm6 
        movss       [edi+edx*4-4*JOINTQUAT_SIZE], xmm4      // q[k3] = ( m[1 * 4 + 2] - s0 * m[2 * 4 + 1] ) * s; 
 
        mov         ecx, [esi+eax+0*JOINTMAT_SIZE+0*16+3*4] 
        mov         [edi-4*JOINTQUAT_SIZE+16], ecx          // q[4] = m[0 * 4 + 3]; 
        mov         edx, [esi+eax+0*JOINTMAT_SIZE+1*16+3*4] 
        mov         [edi-4*JOINTQUAT_SIZE+20], edx          // q[5] = m[1 * 4 + 3]; 
        mov         ecx, [esi+eax+0*JOINTMAT_SIZE+2*16+3*4] 
        mov         [edi-4*JOINTQUAT_SIZE+24], ecx          // q[6] = m[2 * 4 + 3]; 
        mov         dword ptr [edi-4*JOINTQUAT_SIZE+28], 0  // q[7] = 0.0f; 
 
        shufps      xmm6, xmm6, R_SHUFFLE_PS( 1, 2, 3, 0 ) 
        shufps      xmm7, xmm7, R_SHUFFLE_PS( 1, 2, 3, 0 ) 
        shufps      xmm0, xmm0, R_SHUFFLE_PS( 1, 2, 3, 0 ) 
        shufps      xmm1, xmm1, R_SHUFFLE_PS( 1, 2, 3, 0 ) 
        shufps      xmm2, xmm2, R_SHUFFLE_PS( 1, 2, 3, 0 ) 
 



        movzx       ecx, byte ptr shuffle[1*4+0]            // ecx = k0 
        movss       [edi+ecx*4-3*JOINTQUAT_SIZE], xmm7      // q[k0] = s * t; 
 
        movzx       edx, byte ptr shuffle[1*4+1]            // edx = k1 
        movss       xmm4, [esi+eax+1*JOINTMAT_SIZE+1*16+0*4] 
        xorps       xmm4, xmm2 
        subss       xmm4, [esi+eax+1*JOINTMAT_SIZE+0*16+1*4] 
        mulss       xmm4, xmm6 
        movss       [edi+edx*4-3*JOINTQUAT_SIZE], xmm4      // q[k1] = ( m[0 * 4 + 1] - s2 * m[1 * 4 + 0] ) * s; 
 
        movzx       ecx, byte ptr shuffle[1*4+2]            // ecx = k2 
        movss       xmm3, [esi+eax+1*JOINTMAT_SIZE+0*16+2*4] 
        xorps       xmm3, xmm1 
        subss       xmm3, [esi+eax+1*JOINTMAT_SIZE+2*16+0*4] 
        mulss       xmm3, xmm6 
        movss       [edi+ecx*4-3*JOINTQUAT_SIZE], xmm3      // q[k2] = ( m[2 * 4 + 0] - s1 * m[0 * 4 + 2] ) * s; 
 
        movzx       edx, byte ptr shuffle[1*4+3]            // edx = k3 
        movss       xmm4, [esi+eax+1*JOINTMAT_SIZE+2*16+1*4] 
        xorps       xmm4, xmm0 
        subss       xmm4, [esi+eax+1*JOINTMAT_SIZE+1*16+2*4] 
        mulss       xmm4, xmm6 
        movss       [edi+edx*4-3*JOINTQUAT_SIZE], xmm4      // q[k3] = ( m[1 * 4 + 2] - s0 * m[2 * 4 + 1] ) * s; 
 
        mov         ecx, [esi+eax+1*JOINTMAT_SIZE+0*16+3*4] 
        mov         [edi-3*JOINTQUAT_SIZE+16], ecx          // q[4] = m[0 * 4 + 3]; 
        mov         edx, [esi+eax+1*JOINTMAT_SIZE+1*16+3*4] 
        mov         [edi-3*JOINTQUAT_SIZE+20], edx          // q[5] = m[1 * 4 + 3]; 
        mov         ecx, [esi+eax+1*JOINTMAT_SIZE+2*16+3*4] 
        mov         [edi-3*JOINTQUAT_SIZE+24], ecx          // q[6] = m[2 * 4 + 3]; 
        mov         dword ptr [edi-3*JOINTQUAT_SIZE+28], 0  // q[7] = 0.0f; 
 
        shufps      xmm6, xmm6, R_SHUFFLE_PS( 1, 2, 3, 0 ) 
        shufps      xmm7, xmm7, R_SHUFFLE_PS( 1, 2, 3, 0 ) 
        shufps      xmm0, xmm0, R_SHUFFLE_PS( 1, 2, 3, 0 ) 
        shufps      xmm1, xmm1, R_SHUFFLE_PS( 1, 2, 3, 0 ) 
        shufps      xmm2, xmm2, R_SHUFFLE_PS( 1, 2, 3, 0 ) 
 
        movzx       ecx, byte ptr shuffle[2*4+0]            // ecx = k0 
        movss       [edi+ecx*4-2*JOINTQUAT_SIZE], xmm7      // q[k0] = s * t; 
 
        movzx       edx, byte ptr shuffle[2*4+1]            // edx = k1 
        movss       xmm4, [esi+eax+2*JOINTMAT_SIZE+1*16+0*4] 
        xorps       xmm4, xmm2 
        subss       xmm4, [esi+eax+2*JOINTMAT_SIZE+0*16+1*4] 
        mulss       xmm4, xmm6 
        movss       [edi+edx*4-2*JOINTQUAT_SIZE], xmm4      // q[k1] = ( m[0 * 4 + 1] - s2 * m[1 * 4 + 0] ) * s; 
 
        movzx       ecx, byte ptr shuffle[2*4+2]            // ecx = k2 
        movss       xmm3, [esi+eax+2*JOINTMAT_SIZE+0*16+2*4] 
        xorps       xmm3, xmm1 
        subss       xmm3, [esi+eax+2*JOINTMAT_SIZE+2*16+0*4] 
        mulss       xmm3, xmm6 
        movss       [edi+ecx*4-2*JOINTQUAT_SIZE], xmm3      // q[k2] = ( m[2 * 4 + 0] - s1 * m[0 * 4 + 2] ) * s; 
 
        movzx       edx, byte ptr shuffle[2*4+3]            // edx = k3 
        movss       xmm4, [esi+eax+2*JOINTMAT_SIZE+2*16+1*4] 
        xorps       xmm4, xmm0 
        subss       xmm4, [esi+eax+2*JOINTMAT_SIZE+1*16+2*4] 
        mulss       xmm4, xmm6 
        movss       [edi+edx*4-2*JOINTQUAT_SIZE], xmm4      // q[k3] = ( m[1 * 4 + 2] - s0 * m[2 * 4 + 1] ) * s; 
 
        mov         ecx, [esi+eax+2*JOINTMAT_SIZE+0*16+3*4] 
        mov         [edi-2*JOINTQUAT_SIZE+16], ecx          // q[4] = m[0 * 4 + 3]; 
        mov         edx, [esi+eax+2*JOINTMAT_SIZE+1*16+3*4] 
        mov         [edi-2*JOINTQUAT_SIZE+20], edx          // q[5] = m[1 * 4 + 3]; 
        mov         ecx, [esi+eax+2*JOINTMAT_SIZE+2*16+3*4] 
        mov         [edi-2*JOINTQUAT_SIZE+24], ecx          // q[6] = m[2 * 4 + 3]; 
        mov         dword ptr [edi-2*JOINTQUAT_SIZE+28], 0  // q[7] = 0.0f; 
 
        shufps      xmm6, xmm6, R_SHUFFLE_PS( 1, 2, 3, 0 ) 
        shufps      xmm7, xmm7, R_SHUFFLE_PS( 1, 2, 3, 0 ) 
        shufps      xmm0, xmm0, R_SHUFFLE_PS( 1, 2, 3, 0 ) 
        shufps      xmm1, xmm1, R_SHUFFLE_PS( 1, 2, 3, 0 ) 
        shufps      xmm2, xmm2, R_SHUFFLE_PS( 1, 2, 3, 0 ) 
 
        movzx       ecx, byte ptr shuffle[3*4+0]            // ecx = k0 
        movss       [edi+ecx*4-1*JOINTQUAT_SIZE], xmm7      // q[k0] = s * t; 
 
        movzx       edx, byte ptr shuffle[3*4+1]            // edx = k1 
        movss       xmm4, [esi+eax+3*JOINTMAT_SIZE+1*16+0*4] 



        xorps       xmm4, xmm2 
        subss       xmm4, [esi+eax+3*JOINTMAT_SIZE+0*16+1*4] 
        mulss       xmm4, xmm6 
        movss       [edi+edx*4-1*JOINTQUAT_SIZE], xmm4      // q[k1] = ( m[0 * 4 + 1] - s2 * m[1 * 4 + 0] ) * s; 
 
        movzx       ecx, byte ptr shuffle[3*4+2]            // ecx = k2 
        movss       xmm3, [esi+eax+3*JOINTMAT_SIZE+0*16+2*4] 
        xorps       xmm3, xmm1 
        subss       xmm3, [esi+eax+3*JOINTMAT_SIZE+2*16+0*4] 
        mulss       xmm3, xmm6 
        movss       [edi+ecx*4-1*JOINTQUAT_SIZE], xmm3      // q[k2] = ( m[2 * 4 + 0] - s1 * m[0 * 4 + 2] ) * s; 
 
        movzx       edx, byte ptr shuffle[3*4+3]            // edx = k3 
        movss       xmm4, [esi+eax+3*JOINTMAT_SIZE+2*16+1*4] 
        xorps       xmm4, xmm0 
        subss       xmm4, [esi+eax+3*JOINTMAT_SIZE+1*16+2*4] 
        mulss       xmm4, xmm6 
        movss       [edi+edx*4-1*JOINTQUAT_SIZE], xmm4      // q[k3] = ( m[1 * 4 + 2] - s0 * m[2 * 4 + 1] ) * s; 
 
        mov         ecx, [esi+eax+3*JOINTMAT_SIZE+0*16+3*4] 
        mov         [edi-1*JOINTQUAT_SIZE+16], ecx          // q[4] = m[0 * 4 + 3]; 
        mov         edx, [esi+eax+3*JOINTMAT_SIZE+1*16+3*4] 
        mov         [edi-1*JOINTQUAT_SIZE+20], edx          // q[5] = m[1 * 4 + 3]; 
        mov         ecx, [esi+eax+3*JOINTMAT_SIZE+2*16+3*4] 
        mov         [edi-1*JOINTQUAT_SIZE+24], ecx          // q[6] = m[2 * 4 + 3]; 
        mov         dword ptr [edi-1*JOINTQUAT_SIZE+28], 0  // q[7] = 0.0f; 
 
        add         eax, 4*JOINTMAT_SIZE 
        jl          loopMat4 
 
    done4: 
        mov         eax, numJoints 
        and         eax, 3 
        jz          done1 
        imul        eax, JOINTMAT_SIZE 
        add         esi, eax 
        neg         eax 
 
    loopMat1: 
        movss       xmm5, [esi+eax+0*JOINTMAT_SIZE+0*16+0*4] 
        movss       xmm6, [esi+eax+0*JOINTMAT_SIZE+1*16+1*4] 
        movss       xmm7, [esi+eax+0*JOINTMAT_SIZE+2*16+2*4] 
 
        // ------------------- 
 
        movaps      xmm0, xmm5 
        addss       xmm0, xmm6 
        addss       xmm0, xmm7 
        cmpnltss    xmm0, SIMD_SP_zero                      // xmm0 = m[0 * 4 + 0] + m[1 * 4 + 1] + m[2 * 4 + 2] > 0.0f 
 
        movaps      xmm1, xmm5 
        movaps      xmm2, xmm5 
        cmpnltss    xmm1, xmm6 
        cmpnltss    xmm2, xmm7 
        andps       xmm2, xmm1                              // xmm2 = m[0 * 4 + 0] > m[1 * 4 + 1] && m[0 * 4 + 0] > m[2 
* 4 + 2] 
 
        movaps      xmm4, xmm6 
        cmpnltss    xmm4, xmm7                              // xmm3 = m[1 * 4 + 1] > m[2 * 4 + 2] 
 
        movaps      xmm1, xmm0 
        andnps      xmm1, xmm2 
        orps        xmm2, xmm0 
        movaps      xmm3, xmm2 
        andnps      xmm2, xmm4 
        orps        xmm3, xmm2 
        xorps       xmm3, SIMD_SP_not 
 
        andps       xmm0, SIMD_DW_mat2quatShuffle0 
        movaps      xmm4, xmm1 
        andps       xmm4, SIMD_DW_mat2quatShuffle1 
        orps        xmm0, xmm4 
        movaps      xmm4, xmm2 
        andps       xmm4, SIMD_DW_mat2quatShuffle2 
        orps        xmm0, xmm4 
        movaps      xmm4, xmm3 
        andps       xmm4, SIMD_DW_mat2quatShuffle3 
        orps        xmm4, xmm0 
 
        movss       shuffle, xmm4 
 



        movaps      xmm0, xmm2 
        orps        xmm0, xmm3                              // xmm0 = xmm2 | xmm3   = s0 
        orps        xmm2, xmm1                              // xmm2 = xmm1 | xmm2   = s2 
        orps        xmm1, xmm3                              // xmm1 = xmm1 | xmm3   = s1 
 
        andps       xmm0, SIMD_SP_signBit 
        andps       xmm1, SIMD_SP_signBit 
        andps       xmm2, SIMD_SP_signBit 
 
        xorps       xmm5, xmm0 
        xorps       xmm6, xmm1 
        xorps       xmm7, xmm2 
        addss       xmm5, xmm6 
        addss       xmm7, SIMD_SP_one 
        addss       xmm5, xmm7                              // xmm5 = t 
 
        movss       xmm7, xmm5                              // xmm7 = t 
        rsqrtss     xmm6, xmm5 
        mulss       xmm5, xmm6 
        mulss       xmm5, xmm6 
        subss       xmm5, SIMD_SP_rsqrt_c0 
        mulss       xmm6, SIMD_SP_mat2quat_rsqrt_c1 
        mulss       xmm6, xmm5                              // xmm5 = s 
 
        mulss       xmm7, xmm6                              // xmm7 = s * t 
        xorps       xmm6, SIMD_SP_signBit                   // xmm6 = -s 
 
        // ------------------- 
 
        movzx       ecx, byte ptr shuffle[0]                // ecx = k0 
        add         edi, JOINTQUAT_SIZE 
        movss       [edi+ecx*4-1*JOINTQUAT_SIZE], xmm7      // q[k0] = s * t; 
 
        movzx       edx, byte ptr shuffle[1]                // edx = k1 
        movss       xmm4, [esi+eax+0*JOINTMAT_SIZE+1*16+0*4] 
        xorps       xmm4, xmm2 
        subss       xmm4, [esi+eax+0*JOINTMAT_SIZE+0*16+1*4] 
        mulss       xmm4, xmm6 
        movss       [edi+edx*4-1*JOINTQUAT_SIZE], xmm4      // q[k1] = ( m[0 * 4 + 1] - s2 * m[1 * 4 + 0] ) * s; 
 
        movzx       ecx, byte ptr shuffle[2]                // ecx = k2 
        movss       xmm3, [esi+eax+0*JOINTMAT_SIZE+0*16+2*4] 
        xorps       xmm3, xmm1 
        subss       xmm3, [esi+eax+0*JOINTMAT_SIZE+2*16+0*4] 
        mulss       xmm3, xmm6 
        movss       [edi+ecx*4-1*JOINTQUAT_SIZE], xmm3      // q[k2] = ( m[2 * 4 + 0] - s1 * m[0 * 4 + 2] ) * s; 
 
        movzx       edx, byte ptr shuffle[3]                // edx = k3 
        movss       xmm4, [esi+eax+0*JOINTMAT_SIZE+2*16+1*4] 
        xorps       xmm4, xmm0 
        subss       xmm4, [esi+eax+0*JOINTMAT_SIZE+1*16+2*4] 
        mulss       xmm4, xmm6 
        movss       [edi+edx*4-1*JOINTQUAT_SIZE], xmm4      // q[k3] = ( m[1 * 4 + 2] - s0 * m[2 * 4 + 1] ) * s; 
 
        mov         ecx, [esi+eax+0*JOINTMAT_SIZE+0*16+3*4] 
        mov         [edi-1*JOINTQUAT_SIZE+16], ecx          // q[4] = m[0 * 4 + 3]; 
        mov         edx, [esi+eax+0*JOINTMAT_SIZE+1*16+3*4] 
        mov         [edi-1*JOINTQUAT_SIZE+20], edx          // q[5] = m[1 * 4 + 3]; 
        mov         ecx, [esi+eax+0*JOINTMAT_SIZE+2*16+3*4] 
        mov         [edi-1*JOINTQUAT_SIZE+24], ecx          // q[6] = m[2 * 4 + 3]; 
        mov         dword ptr [edi-1*JOINTQUAT_SIZE+28], 0  // q[7] = 0.0f; 
 
        add         eax, JOINTMAT_SIZE 
        jl          loopMat1 
 
    done1: 
    } 
} 
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