
From Quaternion to Matrix and Back
February 27th 2005
J.M.P. van Waveren

© 2005, Id Software, Inc.

Abstract
Optimized routines for the conversion between quaternions and matrices are presented.

First the regular C/C++ routines presented in literature are optimized and/or

restructured to make it easier for the compiler to generate optimized assembler code.

Next the best approach to SIMD is determined and the SIMD optimizations are partially

prototyped in regular C/C++ code. Finally the Intel Streaming SIMD Extensions are

used to get the most out of every clock cycle.

1. Introduction
Quaternions are often used in skeletal animation systems for the interpolation between

general rotations. When interpolating between animation key frames quaternions

provide an efficient means to interpolate the general rotations of joints in a skeleton.

However, matrices are more efficient when many points or vertices need to be

transformed, and the joints in a skeleton typically transform many vertices of a

polygonal mesh. As such the desire arises to convert quaternions to matrices.

Sometimes it may also be desired to modify a skeleton using matrices. Therefore it may

also be useful to convert matrices to quaternions.

1.1 Previous Work

The quaternion was first introduced by Will iam Rowan Hamilton (1805 - 1865) as a

successor to complex numbers [1]. Arthur Cayley (1821 - 1895) contributed further by

describing rotations with quaternion multiplication [2]. Ken Shoemake popularized

quaternions in the world of computer graphics [6]. Quaternions have since found their

way into many different systems among which animation, inverse kinematics and

physics.

In skeletal animation systems quaternions are often used to interpolate between joint

orientations specified with key frames or animation curves [7,9,10]. On the other hand

rotation matrices are often used when many points in space need to be transformed like

the vertices of the skin of an animated model. Rotation matrices are typically more

efficient on today's hardware when many positions need to be transformed. Because

both quaternions and rotation matrices are useful and efficient for certain calculations

the desire arises to convert between these representations. These conversions were

introduced by Ken Shoemake [6,7,8] in the context of computer graphics.

1.2 Layout

Section 2 shows some properties of quaternions and rotation matrices. Section 3

describes the conversion from joint quaternions to joint matrices. The conversion from

joint matrices to joint quaternions is presented in section 4. The results of the

optimizations are presented in section 5 and several conclusions are drawn in section 6.

2. Quaternions and Rotation Matrices.
The unit quaternion sphere is equivalent to the space of general rotations. Throughout

this article quaternions will represent general rotations. The four components of a

quaternion are denoted (x, y, z, w) and the quaternion will be represented in code as

follows.

struct Quaternion {
 float x, y, z, w;
};

A quaternion (x, y, z, w) which represents a general rotation can be interpreted

geometrically as follows.

x = X · sin(α / 2)

y = Y · sin(α / 2)
z = Z · sin(α / 2)

w = cos(α / 2)

Here (X, Y, Z) is the unit length axis of rotation in 3D space and α is the angle of

rotation about the axis in radians.

A general rotation can also be defined with a 3x3 orthonormal matrix. Each row and

each column of the matrix is a 3D vector of unit length. The rows of the matrix are

orthogonal to each other and the same goes for the columns.

Quaternions and rotation matrices are often used in skeletal animation systems to

describe the orientation and translation of joints in a skeleton. Joints using a

quaternion for the orientation will be represented in code as follows.

struct Vec4 {
 float x, y, z, w;
};

struct JointQuat {
 Quaternion q;
 Vec4 t;
};

Joints using a rotation matrix for the orientation will be represented in code as follows.

struct JointMat {
 float mat[3*4];
};

This is a 3x4 matrix where the first three elements of each row are from a row-major

rotation matrix and the last element of every row is the translation over one axis.

3. Quaternion to Matrix
For the quaternion (x, y, z, w) the corresponding rotation matrix M is defined as follows

[6].

 1 - 2y² - 2z² 2xy + 2wz 2xz - 2wy

 2xy - 2wz 1 - 2x² - 2z² 2yz + 2wx M =

 2xz + 2wy 2yz - 2wx 1 - 2x² - 2y²

By grouping the common products the joint quaternion to joint matrix conversion can be

implemented as follows.

void ConvertJointQuatsToJointMats(JointMat *jointMats, const JointQuat *jointQuats, const int numJoints) {

 for (int i = 0; i < numJoints; i++) {
 const float *q = &jointQuats[i].q;
 float *m = jointMats[i].mat;

 m[0*4+3] = q[4];
 m[1*4+3] = q[5];
 m[2*4+3] = q[6];

 float x2 = q[0] + q[0];
 float y2 = q[1] + q[1];
 float z2 = q[2] + q[2];
 {
 float xx2 = q[0] * x2;
 float yy2 = q[1] * y2;
 float zz2 = q[2] * z2;

 m[0*4+0] = 1.0f - yy2 - zz2;
 m[1*4+1] = 1.0f - xx2 - zz2;
 m[2*4+2] = 1.0f - xx2 - yy2;
 }
 {
 float yz2 = q[1] * z2;
 float wx2 = q[3] * x2;

 m[2*4+1] = yz2 - wx2;
 m[1*4+2] = yz2 + wx2;
 }
 {
 float xy2 = q[0] * y2;
 float wz2 = q[3] * z2;

 m[1*4+0] = xy2 - wz2;
 m[0*4+1] = xy2 + wz2;
 }
 {
 float xz2 = q[0] * z2;
 float wy2 = q[3] * y2;

 m[0*4+2] = xz2 - wy2;
 m[2*4+0] = xz2 + wy2;
 }
 }
}

The above routine localizes variable dependencies with additional braces to make it

easier for the compiler to produce optimized FPU code.

One thing becomes immediately apparent when examining the above routine. The

number of mathematical operations is minimal compared to the number of data move

operations. Furthermore the way the quaternion components are scattered into a matrix

makes it hard to exploit parallelism through increased throughput. The required swizzle

of the quaternion components and de-swizzle of the calculated matrix elements easily

nullifies any gain from executing four operations at once for the few mathematical

operations used in the conversion.

Instead of exploiting parallelism through increased throughput, parallelism can also be

exploited with a compressed calculation. As it turns out it is not that hard to find

common operations that can be executed in parallel, but it is not trivial to arrange them

in such a way that consecutive operations in the conversion can be executed with SIMD

instructions without requiring excessive swizzling. However, the following prototype can

be constructed which has several advantageous properties.

void ConvertJointQuatsToJointMats(JointMat *jointMats, const JointQuat *jointQuats, const int numJoints) {

 for (int i = 0; i < numJoints; i++) {
 const float *q = &jointQuats[i].q;
 float *m = jointMats[i].mat;

 float x2 = q[0] + q[0];
 float y2 = q[1] + q[1];
 float z2 = q[2] + q[2];
 float w2 = q[3] + q[3];

 float yy2 = q[1] * y2;
 float xy2 = q[0] * y2;
 float xz2 = q[0] * z2;
 float yz2 = q[1] * z2;

 float zz2 = q[2] * z2;
 float wz2 = q[3] * z2;
 float wy2 = q[3] * y2;
 float wx2 = q[3] * x2;

 float xx2 = q[0] * x2;

 m[0*4+0] = - yy2 - zz2 + 1.0f;
 m[0*4+1] = xy2 + wz2;
 m[0*4+2] = xz2 - wy2;
 m[0*4+3] = q[4];

 m[1*4+0] = xy2 - wz2;
 m[1*4+1] = - xx2 - zz2 + 1.0f;
 m[1*4+2] = yz2 + wx2;
 m[1*4+3] = q[5];

 m[2*4+0] = xz2 + wy2;
 m[2*4+1] = yz2 - wx2;
 m[2*4+2] = - xx2 - yy2 + 1.0f;
 m[2*4+3] = q[6];
 }
}

The above routine should not be used as a replacement for the former routine because

it is significantly slower when compiled to FPU code. However, the above routine does

provide a good starting point for an SSE optimized version.

The conversion counts 9 multiplications that can be executed with three SSE

instructions. Because of the way the multiplications are arranged in the above routine,

the first row of the matrix can be calculated directly from the first 8 products. The

second row can be calculated by replacing one of the first 8 products with the 9th

product. As such the swizzling required during the conversion is minimized. Because the

elements of the first two rows are calculated by adding and subtracting products, the

sign of some of the products is changed with the 'xorps' instruction which allows a

single 'subps' instruction to be used per row. Only the first three elements of the first

two rows are calculated from the 9 products. Because of the way the products are

arranged the 'subps' instructions used for the first two rows also calculate two elements

for the last row in the fourth elements of the SSE registers. The last diagonal element

is then calculated separately and combined with these fourth elements to form the third

row.

The complete SSE optimized code for the conversion can be found in appendix A. The

code assumes that both the list with joints and the list with matrices are at least 16

byte aligned.

The SSE2 instruction 'pshufd' is used to swizzle the quaternion components before

multiplying them. This instruction is meant to be used for double word integer data.

However, since every 32 bits floating point bit pattern represents a valid integer this

instruction can be used on floating point data without problems. The advantage of using

the 'pshufd' instruction is that the complete contents of one SSE register can be copied

and swizzled into another SSE register.

4. Matrix to Quaternion
Converting a rotation matrix to a quaternion is a bit more challenging. The quaternion

components always appear in pairs in the rotation matrix and some manipulation is

required to extract them. To avoid sign loss only one component of the quaternion is

extracted using the diagonal and divided into cross-diagonal sums. The algorithm avoids

precision loss due to near-zero divides by looking for a component of large magnitude

as divisor, first w, then x, y, or z. When the trace of the matrix (sum of diagonal

elements) is greater than zero, |w| is greater than 1/2, which is as small as the largest

component can be. Otherwise, the largest diagonal element corresponds to the largest

of |x|, |y|, or |z|, one of which must be larger than |w|, and at least 1/2. The following

routine converts JointQuats to JointMats using the quaternion to matrix conversion.

float ReciprocalSqrt(float x) {
 long i;
 float y, r;

 y = x * 0.5f;
 i = *(long *)(&x);
 i = 0x5f3759df - (i >> 1);
 r = *(float *)(&i);
 r = r * (1.5f - r * r * y);
 return r;
}

void ConvertJointMatsToJointQuats(JointQuat *jointQuats, const JointMat *jointMats, const int numJoints) {

 for (int i = 0; i < numJoints; i++) {

 float *q = &jointQuats[i].q;
 const float *m = jointMats[i].mat;

 if (m[0 * 4 + 0] + m[1 * 4 + 1] + m[2 * 4 + 2] > 0.0f) {

 float t = + m[0 * 4 + 0] + m[1 * 4 + 1] + m[2 * 4 + 2] + 1.0f;
 float s = ReciprocalSqrt(t) * 0.5f;

 q[3] = s * t;
 q[2] = (m[0 * 4 + 1] - m[1 * 4 + 0]) * s;
 q[1] = (m[2 * 4 + 0] - m[0 * 4 + 2]) * s;
 q[0] = (m[1 * 4 + 2] - m[2 * 4 + 1]) * s;

 } else if (m[0 * 4 + 0] > m[1 * 4 + 1] && m[0 * 4 + 0] > m[2 * 4 + 2]) {

 float t = + m[0 * 4 + 0] - m[1 * 4 + 1] - m[2 * 4 + 2] + 1.0f;
 float s = ReciprocalSqrt(t) * 0.5f;

 q[0] = s * t;
 q[1] = (m[0 * 4 + 1] + m[1 * 4 + 0]) * s;

 q[2] = (m[2 * 4 + 0] + m[0 * 4 + 2]) * s;
 q[3] = (m[1 * 4 + 2] - m[2 * 4 + 1]) * s;

 } else if (m[1 * 4 + 1] > m[2 * 4 + 2]) {

 float t = - m[0 * 4 + 0] + m[1 * 4 + 1] - m[2 * 4 + 2] + 1.0f;
 float s = ReciprocalSqrt(t) * 0.5f;

 q[1] = s * t;
 q[0] = (m[0 * 4 + 1] + m[1 * 4 + 0]) * s;
 q[3] = (m[2 * 4 + 0] - m[0 * 4 + 2]) * s;
 q[2] = (m[1 * 4 + 2] + m[2 * 4 + 1]) * s;

 } else {

 float t = - m[0 * 4 + 0] - m[1 * 4 + 1] + m[2 * 4 + 2] + 1.0f;
 float s = ReciprocalSqrt(t) * 0.5f;

 q[2] = s * t;
 q[3] = (m[0 * 4 + 1] - m[1 * 4 + 0]) * s;
 q[0] = (m[2 * 4 + 0] + m[0 * 4 + 2]) * s;
 q[1] = (m[1 * 4 + 2] + m[2 * 4 + 1]) * s;

 }

 q[4] = m[0 * 4 + 3];
 q[5] = m[1 * 4 + 3];
 q[6] = m[2 * 4 + 3];
 q[7] = 0.0f;
 }
}

The above routine may appear to be quite different from the commonly used

implementation as presented by Ken Shoemake [6]. However, the above routine just

unrolls the four cases for the different divisors. The routine is typically faster because it

does not use any variable indexing into arrays. The above routine also uses a fast

reciprocal square root approximation [14,15,16].

When examining the above code a key observation can be made. The code for each of

the four cases is almost the same. The only differences are a couple of signs and the

order in which the components of the quaternion are stored. To emphasize these

differences the above routine can be rewritten to the following routine.

void ConvertJointMatsToJointQuats(JointQuat *jointQuats, const JointMat *jointMats, const int numJoints) {

 for (int i = 0; i < numJoints; i++) {
 float s0, s1, s2;
 int k0, k1, k2, k3;

 float *q = &jointQuats[i].q;
 const float *m = jointMats[i].mat;

 if (m[0 * 4 + 0] + m[1 * 4 + 1] + m[2 * 4 + 2] > 0.0f) {

 k0 = 3;
 k1 = 2;
 k2 = 1;
 k3 = 0;
 s0 = 1.0f;
 s1 = 1.0f;
 s2 = 1.0f;

 } else if (m[0 * 4 + 0] > m[1 * 4 + 1] && m[0 * 4 + 0] > m[2 * 4 + 2]) {

 k0 = 0;
 k1 = 1;
 k2 = 2;
 k3 = 3;
 s0 = 1.0f;
 s1 = -1.0f;
 s2 = -1.0f;

 } else if (m[1 * 4 + 1] > m[2 * 4 + 2]) {

 k0 = 1;
 k1 = 0;
 k2 = 3;
 k3 = 2;
 s0 = -1.0f;
 s1 = 1.0f;
 s2 = -1.0f;

 } else {

 k0 = 2;
 k1 = 3;
 k2 = 0;
 k3 = 1;
 s0 = -1.0f;
 s1 = -1.0f;
 s2 = 1.0f;

 }

 float t = s0 * m[0 * 4 + 0] + s1 * m[1 * 4 + 1] + s2 * m[2 * 4 + 2] + 1.0f;
 float s = ReciprocalSqrt(t) * 0.5f;

 q[k0] = s * t;
 q[k1] = (m[0 * 4 + 1] - s2 * m[1 * 4 + 0]) * s;
 q[k2] = (m[2 * 4 + 0] - s1 * m[0 * 4 + 2]) * s;
 q[k3] = (m[1 * 4 + 2] - s0 * m[2 * 4 + 1]) * s;

 q[4] = m[0 * 4 + 3];
 q[5] = m[1 * 4 + 3];
 q[6] = m[2 * 4 + 3];
 q[7] = 0.0f;
 }
}

In the above code each case sets 4 indices (k0, k1, k2, k3) and three sign multipliers

(s0, s1, s2). The indices are used to determine the order in which the different

quaternion components are stored and the sign multipliers are used to change the signs

in the calculation. The above routine should not be used as a replacement for the

former routine because it is significantly slower when compiled to FPU code. However,

the above routine does provide a blue print for an SSE optimized version.

The best approach to SIMD for the joint matrix to joint quaternion conversion is to

exploit parallelism through increased throughput. The routine presented here will

operate on four conversion per iteration and the scalar instructions are replaced with

functionally equivalent SSE instructions. This requires a swizzle because the matrices

are stored per joint while some of the individual elements of four matrices need to be

grouped into SSE registers. Furthermore the conditionally executed code for the four

different cases has to be replaced with a single sequence of instructions for all cases.

The initial swizzle loads the diagonal elements of four matrices into three SSE registers.

The swizzle loads one element at a time and shuffles it into one of the SSE registers.

The diagonal elements are stored in the xmm5, xmm6 and xmm7 register. Based on the

diagonal elements the three conditions are evaluated and the results are stored in the

xmm0, xmm2, and xmm4 register as follows:

movaps xmm0, xmm5
addps xmm0, xmm6
addps xmm0, xmm7
cmpnltps xmm0, SIMD_SP_zero // xmm0 = m[0 * 4 + 0] + m[1 * 4 + 1] + m[2 * 4 + 2] > 0.0f

movaps xmm1, xmm5
movaps xmm2, xmm5
cmpnltps xmm1, xmm6
cmpnltps xmm2, xmm7
andps xmm2, xmm1 // xmm2 = m[0 * 4 + 0] > m[1 * 4 + 1] && m[0 * 4 + 0] > m[2 * 4 + 2]

movaps xmm4, xmm6
cmpnltps xmm4, xmm7 // xmm4 = m[1 * 4 + 1] > m[2 * 4 + 2]

From the three conditions four masks are calculated for the four cases. These masks are

stored in the xmm0, xmm1, xmm2 and xmm3 register. Based on the chosen divisor only

one of these registers will be fi l led with all one bits and the other registers will be all

zeros. The masks are calculated as follows.

movaps xmm1, xmm0
andnps xmm1, xmm2
orps xmm2, xmm0
movaps xmm3, xmm2
andnps xmm2, xmm4
orps xmm3, xmm2
xorps xmm3, SIMD_SP_not

The components of a quaternion are stored in a different order based on the chosen

divisor. The indices k0 through k3 in the C/C++ blue print basically specify a swizzle to

store the components of a quaternion. The correct swizzle corresponding to the chosen

divisor can be selected using the four masks calculated above. The four different

swizzles are stored as 8 bit indices in 16 byte constants as follows.

#define ALIGN4_INIT1(X, I) __declspec(align(16)) static X[4] = { I, I, I, I }

ALIGN4_INIT1(unsigned long SIMD_DW_mat2quatShuffle0, (3<<0)|(2<<8)|(1<<16)|(0<<24));
ALIGN4_INIT1(unsigned long SIMD_DW_mat2quatShuffle1, (0<<0)|(1<<8)|(2<<16)|(3<<24));
ALIGN4_INIT1(unsigned long SIMD_DW_mat2quatShuffle2, (1<<0)|(0<<8)|(3<<16)|(2<<24));
ALIGN4_INIT1(unsigned long SIMD_DW_mat2quatShuffle3, (2<<0)|(3<<8)|(0<<16)|(1<<24));

One of the swizzles can be selected by using a binary 'and' of each of the above swizzle

constants with one of the four masks and using a binary 'or' on the results. The

following SSE code selects one of the swizzles for each of the four conversions and

stores the result in a local byte array called 'shuffle'.

ALIGN16(byte shuffle[16];)

andps xmm0, SIMD_DW_mat2quatShuffle0
movaps xmm4, xmm1
andps xmm4, SIMD_DW_mat2quatShuffle1
orps xmm0, xmm4
movaps xmm4, xmm2
andps xmm4, SIMD_DW_mat2quatShuffle2
orps xmm0, xmm4
movaps xmm4, xmm3
andps xmm4, SIMD_DW_mat2quatShuffle3
orps xmm4, xmm0
movaps shuffle, xmm4

Next to the swizzle the three signs for each of the four cases need to be calculated as

well. The following SSE code calculates sign bits from the four masks for the four

conversions and stores them in the xmm0, xmm1 and xmm2 register.

ALIGN4_INIT1(unsigned long SIMD_SP_signBit, IEEE_SP_SIGN);

movaps xmm0, xmm2
orps xmm0, xmm3 // xmm0 = xmm2 | xmm3 = s0
orps xmm2, xmm1 // xmm2 = xmm1 | xmm2 = s2
orps xmm1, xmm3 // xmm1 = xmm1 | xmm3 = s1
andps xmm0, SIMD_SP_signBit
andps xmm1, SIMD_SP_signBit
andps xmm2, SIMD_SP_signBit

The scalar instructions of the first part of the conversion can now be replaced with

functionally equivalent SSE instructions. The 'xorps' instruction can be used with the

three sign bits for each of the four conversions to fl ip the signs of some of the matrix

elements.

Intel SSE instruction set has an instruction to calculate the reciprocal square root with

12 bits of precision. A simple Newton-Rapson iteration can be used to improve the

accuracy [17]. The following assembler code calculates the reciprocal square root of the

four floating point numbers stored in the 'xmm5' register. The result is stored in the

'xmm6' register.

ALIGN4_INIT1(float SIMD_SP_rsqrt_c0, 3.0f);
ALIGN4_INIT1(float SIMD_SP_rsqrt_c1, -0.5f);

rsqrtps xmm6, xmm5
mulps xmm5, xmm6
mulps xmm5, xmm6
subps xmm5, SIMD_SP_rsqrt_c0
mulps xmm6, SIMD_SP_rsqrt_c1
mulps xmm6, xmm5

The conversion uses the reciprocal square root multiplied with a half. As such the

second constant of the Newton-Rapson iteration is pre-multiplied with a half to get half

the reciprocal square root at no additional cost.

ALIGN4_INIT1(float SIMD_SP_rsqrt_c0, 3.0f);
ALIGN4_INIT1(float SIMD_SP_mat2quat_rsqrt_c1, -0.5f * 0.5f);

rsqrtps xmm6, xmm5
mulps xmm5, xmm6
mulps xmm5, xmm6
subps xmm5, SIMD_SP_rsqrt_c0
mulps xmm6, SIMD_SP_mat2quat_rsqrt_c1
mulps xmm6, xmm5

SSE scalar code is used for the last part of the conversion that uses the off-diagonal

elements of the matrix. For this part of the conversion it does not pay off to use SIMD

instructions because the swizzle and de-swizzle required to pack and unpack the off-

diagonal elements would nullify any gains from executing four operations at once.

To store the components of the quaternion the 'shuffle' byte array is used to get the

correct index for the chosen divisor. The index is loaded into a general purpose register

and used to get the address of the quaternion component.

movzx ecx, byte ptr shuffle[0*4+0] // ecx = k0
movss [edi+ecx*4-4*JOINTQUAT_SIZE], xmm7 // q[k0] = s * t;

The complete routine for the conversion from joint matrices to joint quaternions is

listed in appendix B. The code makes no assumptions about alignment but for the best

performance the list with matrices and the list with joints should be at least 16 byte

aligned.

5. Results
The various routines have been tested on an Intel® Pentium® 4 Processor on 130nm

Technology and an Intel® Pentium® 4 Processor on 90nm Technology. The routines

operated on a list of 1024 joints. The total number of clock cycles and the number of

clock cycles per joint for each routine on the different CPUs are listed in the following

table.

Hot Cache Clock Cycle Counts

Routine
P4 130nm total

clock cycles
P4 130nm clock cycles

per element
P4 90nm total

clock cycles
P4 90nm clock cycles per

element

ConvertJointQuatsToJointMats (C)

55528 54 63279 62

ConvertJointQuatsToJointMats
(SSE)

30916 30 34362 34

ConvertJointMatsToJointQuats (C)

176332 172 176553 173

ConvertJointMatsToJointQuats
(SSE) 62460 61 73710 72

6. Conclusion
Two optimized conversions were presented, from joint quaternion to joint matrix and

from joint matrix to joint quaternion. Each of the conversions uses a different approach

to SIMD. The optimized conversion from joint quaternion to joint matrix uses a

compressed calculation. The optimized conversion from joint matrix to joint quaternion

exploits parallelism through increased throughput.

For both conversions the SIMD optimized routines were first prototyped using regular

C/C++. Rewriting the C/C++ code often helps to analyze the algorithm and to decide

upon the best approach to exploiting parallelism with SIMD code.

Optimizing the conversions turned out to be not quite trivial but after giving it some

thought the results are quite satisfying. The SSE optimized conversion from joint

quaternion to joint matrix consumes over 44% less clock cycles than the optimized C

version. The SSE optimized conversion from joint matrix to joint quaternion is more

than two times faster than the optimized C version.

7. References

1. On quaternions; or on a new system of imaginaries in algebra.

Sir William Rowan Hamilton

Philosophical Magazine xxv, pp. 10-13, July 1844

The Collected Mathematical Papers, Vol. 3, pp. 355-362, Cambridge University

Press, 1967

2. On certain results relating to quaternions.

Arthur Cayley

Philosophical Magazine xxvi, pp. 141-145, February 1845

The collected mathematical papers of Arthur Cayley, Vol. 1, pp. 123-126, Cambridge

University Press, 1889

Available Online: http://name.umdl.umich.edu/ABS3153

http://name.umdl.umich.edu/ABS3153

3. Complexity of Quaternion Multiplication

Thomas D. Howell, Jean-Claude Lafon

Department of Computer Science, Cornell University, Ithaca, N.Y., TR-75-245, June

1975

4. Application of Quaternions

Gernot Hoffmann

January 20, 2002

Original report "Anleiting zum praktischen Gebrauch von Quaternionen", February

1978

Available Online: http://www.fho-emden.de/~hoffmann

5. Application of Quaternions to Computation with Rotations

Eugene Slamin

Working Paper, Stanford AI Lab, 1979

6. Animating rotation with quaternion curves.

Ken Shoemake

Computer Graphics 19(3):245-254, 1985

Available Online: http://portal.acm.org/citation.cfm?doid=325334.325242

7. Quaternion calculus and fast animation.

Ken Shoemake

SIGGRAPH Course Notes, 10:101-121, 1987

8. Quaternions

Ken Shoemake

Department of Computer and Information Science, University of Pennsylvania,

Philadelphia, 1994

Available Online: ftp://ftp.cis.upenn.edu/pub/graphics/shoemake/

9. Quaternion Calculus for Modeling Rotations in 3D Space

Hartmut Liefke

Department of Computer and Information Science, University of Pennsylvania, April

1998

10. Quaternions, Interpolation and Animation

Erik B. Dam, Martin Koch, Martin Lillholm

Department of Computer Science, University of Copenhagen, Denmark, July 1998

Technical Report DIKU-TR-98/5

11. Quaternion Algebra and Calculus

David Eberly

Magic Software, 2001

http://www.fho-emden.de/%7Ehoffmann
http://portal.acm.org/citation.cfm?doid=325334.325242
ftp://ftp.cis.upenn.edu/pub/graphics/shoemake/

Available Online: http://www.magic-software.com

12. Rotation Representations and Performance Issues

David Eberly

Magic Software, 2002

Available Online: http://www.magic-software.com

13. A Linear Algebraic Approach to Quaternions

David Eberly

Magic Software, September 16, 2002

Available Online: http://www.magic-software.com

14. Computing the Inverse Square Root

Ken Turkowski

Graphics Gems V

Morgan Kaufmann Publishers, 1st edition, January 15 1995

ISBN: 0125434553

15. Fast Inverse Square Root

David Eberly

Magic Software, Inc. January 26, 2002

Available Online: http://www.magic-software.com

16. Fast Inverse Square Root

Chris Lomont

Department of Mathematics, Purdue University, Indiana, February 2003

Available Online: http://www.math.purdue.edu/~clomont

17. Increasing the Accuracy of the Results from the Reciprocal and Reciprocal Square

Root Instructions using the Newton-Raphson Method

Intel

Application Note 803, order nr. 243637-002 version 2.1, January 1999

Available Online: http://www.intel.com/cd/ids/developer/asmo-

na/eng/microprocessors/ia32/pentium4/resources/appnotes/19061.htm

http://www.magic-software.com/
http://www.magic-software.com/
http://www.magic-software.com/
http://www.magic-software.com/
http://www.math.purdue.edu/%7Eclomont
http://www.intel.com/cd/ids/developer/asmo-na/eng/microprocessors/ia32/pentium4/resources/appnotes/19061.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/microprocessors/ia32/pentium4/resources/appnotes/19061.htm

Appendix A
/*
 SSE Optimized Quaternion to Matrix Conversion
 Copyright (C) 2005 Id Software, Inc.
 Written by J.M.P. van Waveren

 This code is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.
*/

#define assert_16_byte_aligned(pointer) assert((((UINT_PTR)(pointer))&15) == 0);
#define ALIGN16(x) __declspec(align(16)) x
#define ALIGN4_INIT1(X, I) ALIGN16(static X[4] = { I, I, I, I })
#define R_SHUFFLE_PS(x, y, z, w) (((w) & 3) << 6 | ((z) & 3) << 4 | ((y) & 3) << 2 | ((x) & 3))

#define IEEE_SP_ZERO 0
#define IEEE_SP_SIGN ((unsigned long) (1 << 31))

ALIGN4_INIT4(unsigned long SIMD_SP_quat2mat_x0, IEEE_SP_ZERO, IEEE_SP_SIGN, IEEE_SP_SIGN, IEEE_SP_SIGN);
ALIGN4_INIT4(unsigned long SIMD_SP_quat2mat_x1, IEEE_SP_SIGN, IEEE_SP_ZERO, IEEE_SP_SIGN, IEEE_SP_SIGN);
ALIGN4_INIT4(unsigned long SIMD_SP_quat2mat_x2, IEEE_SP_ZERO, IEEE_SP_SIGN, IEEE_SP_SIGN, IEEE_SP_SIGN);

struct Quaternion {
 float x, y, z, w;
};

struct Vec4 {
 float x, y, z, w;
};

struct JointQuat {
 Quaternion q;
 Vec4 t;
};

struct JointMat {
 float mat[3*4];
};

#define JOINTQUAT_SIZE (8*4)
#define JOINTQUAT_SIZE_SHIFT (5)
#define JOINTQUAT_Q_OFFSET (0*4)
#define JOINTQUAT_T_OFFSET (4*4)
#define JOINTMAT_SIZE (4*3*4)

void ConvertJointQuatsToJointMats(JointMat *jointMats, const JointQuat *jointQuats, const int numJoints) {

 assert_16_byte_aligned(jointMats);
 assert_16_byte_aligned(jointQuats);

 __asm {
 mov eax, numJoints
 shl eax, JOINTQUAT_SIZE_SHIFT
 mov esi, jointQuats
 mov edi, jointMats

 add esi, eax
 neg eax
 jz done

 loopQuat:
 movaps xmm0, [esi+eax+JOINTQUAT_Q_OFFSET] // xmm0 = q.x, q.y, q.z, q.w
 movaps xmm6, [esi+eax+JOINTQUAT_T_OFFSET] // xmm6 = t.x, t.y, t.z, t.w

 add edi, JOINTMAT_SIZE

 movaps xmm1, xmm0 // xmm1 = x, y, z, w
 addps xmm1, xmm1 // xmm1 = x2, y2, z2, w2

 add eax, JOINTQUAT_SIZE

 // calculate the 9 products

 pshufd xmm2, xmm0, R_SHUFFLE_D(1, 0, 0, 1) // xmm2 = y, x, x, y
 pshufd xmm3, xmm1, R_SHUFFLE_D(1, 1, 2, 2) // xmm3 = y2, y2, z2, z2
 mulps xmm2, xmm3 // xmm2 = yy2, xy2, xz2, yz2

 pshufd xmm4, xmm0, R_SHUFFLE_D(2, 3, 3, 3) // xmm4 = z, w, w, w
 pshufd xmm5, xmm1, R_SHUFFLE_D(2, 2, 1, 0) // xmm5 = z2, z2, y2, x2
 mulps xmm4, xmm5 // xmm4 = zz2, wz2, wy2, wx2

 mulss xmm0, xmm1 // xmm0 = xx2, y2, z2, w2

 // calculate the last two elements of the third row
 movss xmm7, SIMD_SP_one // xmm7 = 1, 0, 0, 0
 subss xmm7, xmm0 // xmm7 = -xx2+1, 0, 0, 0
 subss xmm7, xmm2 // xmm7 = -xx2-yy2+1, 0, 0, 0
 shufps xmm7, xmm6, R_SHUFFLE_PS(0, 1, 2, 3) // xmm7 = -xx2-yy2+1, 0, t.z, t.w

 // calcluate first row
 xorps xmm2, SIMD_SP_quat2mat_x0 // xmm2 = yy2, -xy2, -xz2, -yz2
 xorps xmm4, SIMD_SP_quat2mat_x1 // xmm4 = -zz2, wz2, -wy2, -wx2
 addss xmm4, SIMD_SP_one // xmm4 = -zz2+1, wz2, -wy2, -wx2
 movaps xmm3, xmm4 // xmm3 = -zz2+1, wz2, -wy2, -wx2
 subps xmm3, xmm2 // xmm3 = -yy2-zz2+1, xy2+wz2, xz2-wy2, yz2-wx2
 movaps [edi-JOINTMAT_SIZE+0*16+0*4], xmm3 // row0 = -yy2-zz2+1, xy2+wz2, xz2-wy2, yz2-wx2
 movss [edi-JOINTMAT_SIZE+0*16+3*4], xmm6 // row0 = -yy2-zz2+1, xy2+wz2, xz2-wy2, t.x

 // calculate second row
 movss xmm2, xmm0 // xmm2 = xx2, -xy2, -xz2, -yz2
 xorps xmm4, SIMD_SP_quat2mat_x2 // xmm4 = -zz2+1, -wz2, wy2, wx2
 subps xmm4, xmm2 // xmm4 = -xx2-zz2+1, xy2-wz2, xz2+wy2, yz2+wx2
 shufps xmm6, xmm6, R_SHUFFLE_PS(1, 2, 3, 0) // xmm6 = t.y, t.z, t.w, t.x
 shufps xmm4, xmm4, R_SHUFFLE_PS(1, 0, 3, 2) // xmm4 = xy2-wz2, -xx2-zz2+1, yz2+wx2, xz2+wy2
 movaps [edi-JOINTMAT_SIZE+1*16+0*4], xmm4 // row1 = xy2-wz2, -xx2-zz2+1, yz2+wx2, xz2+wy2
 movss [edi-JOINTMAT_SIZE+1*16+3*4], xmm6 // row1 = xy2-wz2, -xx2-zz2+1, yz2+wx2, t.y

 // calculate third row
 movhlps xmm3, xmm4 // xmm3 = yz2+wx2, xz2+wy2, xz2-wy2, yz2-wx2
 shufps xmm3, xmm7, R_SHUFFLE_PS(1, 3, 0, 2) // xmm3 = xz2+wy2, yz2-wx2, -xx2-yy2+1, t.z
 movaps [edi-JOINTMAT_SIZE+2*16+0*4], xmm3 // row2 = xz2+wy2, yz2-wx2, -xx2-yy2+1, t.z

 jl loopQuat

 done:
 }
}

Appendix B
/*
 SSE Optimized Matrix to Quaternion Conversion
 Copyright (C) 2005 Id Software, Inc.
 Written by J.M.P. van Waveren

 This code is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.
*/

ALIGN4_INIT1(unsigned long SIMD_SP_signBit, IEEE_SP_SIGN);
ALIGN4_INIT1(unsigned long SIMD_SP_not, 0xFFFFFFFF);

ALIGN4_INIT1(unsigned long SIMD_DW_mat2quatShuffle0, (3<<0)|(2<<8)|(1<<16)|(0<<24));
ALIGN4_INIT1(unsigned long SIMD_DW_mat2quatShuffle1, (0<<0)|(1<<8)|(2<<16)|(3<<24));
ALIGN4_INIT1(unsigned long SIMD_DW_mat2quatShuffle2, (1<<0)|(0<<8)|(3<<16)|(2<<24));
ALIGN4_INIT1(unsigned long SIMD_DW_mat2quatShuffle3, (2<<0)|(3<<8)|(0<<16)|(1<<24));

ALIGN4_INIT1(float SIMD_SP_zero, 0.0f);
ALIGN4_INIT1(float SIMD_SP_one, 1.0f);

ALIGN4_INIT1(float SIMD_SP_mat2quat_rsqrt_c1, -0.5f * 0.5f);

ALIGN4_INIT1(float SIMD_SP_rsqrt_c0, 3.0f);
ALIGN4_INIT1(float SIMD_SP_rsqrt_c1, -0.5f);

void ConvertJointMatsToJointQuats(JointQuat *jointQuats, const JointMat *jointMats, const int numJoints) {

 ALIGN16(byte shuffle[16];)

 __asm {
 mov eax, numJoints
 mov esi, jointMats
 mov edi, jointQuats
 and eax, ~3
 jz done4
 imul eax, JOINTMAT_SIZE
 add esi, eax
 neg eax

 loopMat4:
 movss xmm5, [esi+eax+3*JOINTMAT_SIZE+0*16+0*4]
 movss xmm6, [esi+eax+3*JOINTMAT_SIZE+1*16+1*4]
 movss xmm7, [esi+eax+3*JOINTMAT_SIZE+2*16+2*4]

 shufps xmm5, xmm5, R_SHUFFLE_PS(3, 0, 1, 2)
 shufps xmm6, xmm6, R_SHUFFLE_PS(3, 0, 1, 2)
 shufps xmm7, xmm7, R_SHUFFLE_PS(3, 0, 1, 2)

 movss xmm0, [esi+eax+2*JOINTMAT_SIZE+0*16+0*4]
 movss xmm1, [esi+eax+2*JOINTMAT_SIZE+1*16+1*4]
 movss xmm2, [esi+eax+2*JOINTMAT_SIZE+2*16+2*4]

 movss xmm5, xmm0
 movss xmm6, xmm1
 movss xmm7, xmm2

 shufps xmm5, xmm5, R_SHUFFLE_PS(3, 0, 1, 2)
 shufps xmm6, xmm6, R_SHUFFLE_PS(3, 0, 1, 2)
 shufps xmm7, xmm7, R_SHUFFLE_PS(3, 0, 1, 2)

 movss xmm0, [esi+eax+1*JOINTMAT_SIZE+0*16+0*4]
 movss xmm1, [esi+eax+1*JOINTMAT_SIZE+1*16+1*4]
 movss xmm2, [esi+eax+1*JOINTMAT_SIZE+2*16+2*4]

 movss xmm5, xmm0
 movss xmm6, xmm1
 movss xmm7, xmm2

 shufps xmm5, xmm5, R_SHUFFLE_PS(3, 0, 1, 2)
 shufps xmm6, xmm6, R_SHUFFLE_PS(3, 0, 1, 2)
 shufps xmm7, xmm7, R_SHUFFLE_PS(3, 0, 1, 2)

 movss xmm0, [esi+eax+0*JOINTMAT_SIZE+0*16+0*4]
 movss xmm1, [esi+eax+0*JOINTMAT_SIZE+1*16+1*4]
 movss xmm2, [esi+eax+0*JOINTMAT_SIZE+2*16+2*4]

 movss xmm5, xmm0
 movss xmm6, xmm1
 movss xmm7, xmm2

 // -------------------

 movaps xmm0, xmm5
 addps xmm0, xmm6
 addps xmm0, xmm7
 cmpnltps xmm0, SIMD_SP_zero // xmm0 = m[0 * 4 + 0] + m[1 * 4 + 1] + m[2 * 4 + 2] > 0.0f

 movaps xmm1, xmm5
 movaps xmm2, xmm5
 cmpnltps xmm1, xmm6
 cmpnltps xmm2, xmm7
 andps xmm2, xmm1 // xmm2 = m[0 * 4 + 0] > m[1 * 4 + 1] && m[0 * 4 + 0] > m[2
* 4 + 2]

 movaps xmm4, xmm6
 cmpnltps xmm4, xmm7 // xmm4 = m[1 * 4 + 1] > m[2 * 4 + 2]

 movaps xmm1, xmm0
 andnps xmm1, xmm2
 orps xmm2, xmm0
 movaps xmm3, xmm2
 andnps xmm2, xmm4
 orps xmm3, xmm2
 xorps xmm3, SIMD_SP_not

 andps xmm0, SIMD_DW_mat2quatShuffle0

 movaps xmm4, xmm1
 andps xmm4, SIMD_DW_mat2quatShuffle1
 orps xmm0, xmm4
 movaps xmm4, xmm2
 andps xmm4, SIMD_DW_mat2quatShuffle2
 orps xmm0, xmm4
 movaps xmm4, xmm3
 andps xmm4, SIMD_DW_mat2quatShuffle3
 orps xmm4, xmm0

 movaps shuffle, xmm4

 movaps xmm0, xmm2
 orps xmm0, xmm3 // xmm0 = xmm2 | xmm3 = s0
 orps xmm2, xmm1 // xmm2 = xmm1 | xmm2 = s2
 orps xmm1, xmm3 // xmm1 = xmm1 | xmm3 = s1

 andps xmm0, SIMD_SP_signBit
 andps xmm1, SIMD_SP_signBit
 andps xmm2, SIMD_SP_signBit

 xorps xmm5, xmm0
 xorps xmm6, xmm1
 xorps xmm7, xmm2
 addps xmm5, xmm6
 addps xmm7, SIMD_SP_one
 addps xmm5, xmm7 // xmm5 = t

 movaps xmm7, xmm5 // xmm7 = t
 rsqrtps xmm6, xmm5
 mulps xmm5, xmm6
 mulps xmm5, xmm6
 subps xmm5, SIMD_SP_rsqrt_c0
 mulps xmm6, SIMD_SP_mat2quat_rsqrt_c1
 mulps xmm6, xmm5 // xmm6 = s

 mulps xmm7, xmm6 // xmm7 = s * t
 xorps xmm6, SIMD_SP_signBit // xmm6 = -s

 // -------------------

 add edi, 4*JOINTQUAT_SIZE

 movzx ecx, byte ptr shuffle[0*4+0] // ecx = k0
 movss [edi+ecx*4-4*JOINTQUAT_SIZE], xmm7 // q[k0] = s * t;

 movzx edx, byte ptr shuffle[0*4+1] // edx = k1
 movss xmm4, [esi+eax+0*JOINTMAT_SIZE+1*16+0*4]
 xorps xmm4, xmm2
 subss xmm4, [esi+eax+0*JOINTMAT_SIZE+0*16+1*4]
 mulss xmm4, xmm6
 movss [edi+edx*4-4*JOINTQUAT_SIZE], xmm4 // q[k1] = (m[0 * 4 + 1] - s2 * m[1 * 4 + 0]) * s;

 movzx ecx, byte ptr shuffle[0*4+2] // ecx = k2
 movss xmm3, [esi+eax+0*JOINTMAT_SIZE+0*16+2*4]
 xorps xmm3, xmm1
 subss xmm3, [esi+eax+0*JOINTMAT_SIZE+2*16+0*4]
 mulss xmm3, xmm6
 movss [edi+ecx*4-4*JOINTQUAT_SIZE], xmm3 // q[k2] = (m[2 * 4 + 0] - s1 * m[0 * 4 + 2]) * s;

 movzx edx, byte ptr shuffle[0*4+3] // edx = k3
 movss xmm4, [esi+eax+0*JOINTMAT_SIZE+2*16+1*4]
 xorps xmm4, xmm0
 subss xmm4, [esi+eax+0*JOINTMAT_SIZE+1*16+2*4]
 mulss xmm4, xmm6
 movss [edi+edx*4-4*JOINTQUAT_SIZE], xmm4 // q[k3] = (m[1 * 4 + 2] - s0 * m[2 * 4 + 1]) * s;

 mov ecx, [esi+eax+0*JOINTMAT_SIZE+0*16+3*4]
 mov [edi-4*JOINTQUAT_SIZE+16], ecx // q[4] = m[0 * 4 + 3];
 mov edx, [esi+eax+0*JOINTMAT_SIZE+1*16+3*4]
 mov [edi-4*JOINTQUAT_SIZE+20], edx // q[5] = m[1 * 4 + 3];
 mov ecx, [esi+eax+0*JOINTMAT_SIZE+2*16+3*4]
 mov [edi-4*JOINTQUAT_SIZE+24], ecx // q[6] = m[2 * 4 + 3];
 mov dword ptr [edi-4*JOINTQUAT_SIZE+28], 0 // q[7] = 0.0f;

 shufps xmm6, xmm6, R_SHUFFLE_PS(1, 2, 3, 0)
 shufps xmm7, xmm7, R_SHUFFLE_PS(1, 2, 3, 0)
 shufps xmm0, xmm0, R_SHUFFLE_PS(1, 2, 3, 0)
 shufps xmm1, xmm1, R_SHUFFLE_PS(1, 2, 3, 0)
 shufps xmm2, xmm2, R_SHUFFLE_PS(1, 2, 3, 0)

 movzx ecx, byte ptr shuffle[1*4+0] // ecx = k0
 movss [edi+ecx*4-3*JOINTQUAT_SIZE], xmm7 // q[k0] = s * t;

 movzx edx, byte ptr shuffle[1*4+1] // edx = k1
 movss xmm4, [esi+eax+1*JOINTMAT_SIZE+1*16+0*4]
 xorps xmm4, xmm2
 subss xmm4, [esi+eax+1*JOINTMAT_SIZE+0*16+1*4]
 mulss xmm4, xmm6
 movss [edi+edx*4-3*JOINTQUAT_SIZE], xmm4 // q[k1] = (m[0 * 4 + 1] - s2 * m[1 * 4 + 0]) * s;

 movzx ecx, byte ptr shuffle[1*4+2] // ecx = k2
 movss xmm3, [esi+eax+1*JOINTMAT_SIZE+0*16+2*4]
 xorps xmm3, xmm1
 subss xmm3, [esi+eax+1*JOINTMAT_SIZE+2*16+0*4]
 mulss xmm3, xmm6
 movss [edi+ecx*4-3*JOINTQUAT_SIZE], xmm3 // q[k2] = (m[2 * 4 + 0] - s1 * m[0 * 4 + 2]) * s;

 movzx edx, byte ptr shuffle[1*4+3] // edx = k3
 movss xmm4, [esi+eax+1*JOINTMAT_SIZE+2*16+1*4]
 xorps xmm4, xmm0
 subss xmm4, [esi+eax+1*JOINTMAT_SIZE+1*16+2*4]
 mulss xmm4, xmm6
 movss [edi+edx*4-3*JOINTQUAT_SIZE], xmm4 // q[k3] = (m[1 * 4 + 2] - s0 * m[2 * 4 + 1]) * s;

 mov ecx, [esi+eax+1*JOINTMAT_SIZE+0*16+3*4]
 mov [edi-3*JOINTQUAT_SIZE+16], ecx // q[4] = m[0 * 4 + 3];
 mov edx, [esi+eax+1*JOINTMAT_SIZE+1*16+3*4]
 mov [edi-3*JOINTQUAT_SIZE+20], edx // q[5] = m[1 * 4 + 3];
 mov ecx, [esi+eax+1*JOINTMAT_SIZE+2*16+3*4]
 mov [edi-3*JOINTQUAT_SIZE+24], ecx // q[6] = m[2 * 4 + 3];
 mov dword ptr [edi-3*JOINTQUAT_SIZE+28], 0 // q[7] = 0.0f;

 shufps xmm6, xmm6, R_SHUFFLE_PS(1, 2, 3, 0)
 shufps xmm7, xmm7, R_SHUFFLE_PS(1, 2, 3, 0)
 shufps xmm0, xmm0, R_SHUFFLE_PS(1, 2, 3, 0)
 shufps xmm1, xmm1, R_SHUFFLE_PS(1, 2, 3, 0)
 shufps xmm2, xmm2, R_SHUFFLE_PS(1, 2, 3, 0)

 movzx ecx, byte ptr shuffle[2*4+0] // ecx = k0
 movss [edi+ecx*4-2*JOINTQUAT_SIZE], xmm7 // q[k0] = s * t;

 movzx edx, byte ptr shuffle[2*4+1] // edx = k1
 movss xmm4, [esi+eax+2*JOINTMAT_SIZE+1*16+0*4]
 xorps xmm4, xmm2
 subss xmm4, [esi+eax+2*JOINTMAT_SIZE+0*16+1*4]
 mulss xmm4, xmm6
 movss [edi+edx*4-2*JOINTQUAT_SIZE], xmm4 // q[k1] = (m[0 * 4 + 1] - s2 * m[1 * 4 + 0]) * s;

 movzx ecx, byte ptr shuffle[2*4+2] // ecx = k2
 movss xmm3, [esi+eax+2*JOINTMAT_SIZE+0*16+2*4]
 xorps xmm3, xmm1
 subss xmm3, [esi+eax+2*JOINTMAT_SIZE+2*16+0*4]
 mulss xmm3, xmm6
 movss [edi+ecx*4-2*JOINTQUAT_SIZE], xmm3 // q[k2] = (m[2 * 4 + 0] - s1 * m[0 * 4 + 2]) * s;

 movzx edx, byte ptr shuffle[2*4+3] // edx = k3
 movss xmm4, [esi+eax+2*JOINTMAT_SIZE+2*16+1*4]
 xorps xmm4, xmm0
 subss xmm4, [esi+eax+2*JOINTMAT_SIZE+1*16+2*4]
 mulss xmm4, xmm6
 movss [edi+edx*4-2*JOINTQUAT_SIZE], xmm4 // q[k3] = (m[1 * 4 + 2] - s0 * m[2 * 4 + 1]) * s;

 mov ecx, [esi+eax+2*JOINTMAT_SIZE+0*16+3*4]
 mov [edi-2*JOINTQUAT_SIZE+16], ecx // q[4] = m[0 * 4 + 3];
 mov edx, [esi+eax+2*JOINTMAT_SIZE+1*16+3*4]
 mov [edi-2*JOINTQUAT_SIZE+20], edx // q[5] = m[1 * 4 + 3];
 mov ecx, [esi+eax+2*JOINTMAT_SIZE+2*16+3*4]
 mov [edi-2*JOINTQUAT_SIZE+24], ecx // q[6] = m[2 * 4 + 3];
 mov dword ptr [edi-2*JOINTQUAT_SIZE+28], 0 // q[7] = 0.0f;

 shufps xmm6, xmm6, R_SHUFFLE_PS(1, 2, 3, 0)
 shufps xmm7, xmm7, R_SHUFFLE_PS(1, 2, 3, 0)
 shufps xmm0, xmm0, R_SHUFFLE_PS(1, 2, 3, 0)
 shufps xmm1, xmm1, R_SHUFFLE_PS(1, 2, 3, 0)
 shufps xmm2, xmm2, R_SHUFFLE_PS(1, 2, 3, 0)

 movzx ecx, byte ptr shuffle[3*4+0] // ecx = k0
 movss [edi+ecx*4-1*JOINTQUAT_SIZE], xmm7 // q[k0] = s * t;

 movzx edx, byte ptr shuffle[3*4+1] // edx = k1
 movss xmm4, [esi+eax+3*JOINTMAT_SIZE+1*16+0*4]

 xorps xmm4, xmm2
 subss xmm4, [esi+eax+3*JOINTMAT_SIZE+0*16+1*4]
 mulss xmm4, xmm6
 movss [edi+edx*4-1*JOINTQUAT_SIZE], xmm4 // q[k1] = (m[0 * 4 + 1] - s2 * m[1 * 4 + 0]) * s;

 movzx ecx, byte ptr shuffle[3*4+2] // ecx = k2
 movss xmm3, [esi+eax+3*JOINTMAT_SIZE+0*16+2*4]
 xorps xmm3, xmm1
 subss xmm3, [esi+eax+3*JOINTMAT_SIZE+2*16+0*4]
 mulss xmm3, xmm6
 movss [edi+ecx*4-1*JOINTQUAT_SIZE], xmm3 // q[k2] = (m[2 * 4 + 0] - s1 * m[0 * 4 + 2]) * s;

 movzx edx, byte ptr shuffle[3*4+3] // edx = k3
 movss xmm4, [esi+eax+3*JOINTMAT_SIZE+2*16+1*4]
 xorps xmm4, xmm0
 subss xmm4, [esi+eax+3*JOINTMAT_SIZE+1*16+2*4]
 mulss xmm4, xmm6
 movss [edi+edx*4-1*JOINTQUAT_SIZE], xmm4 // q[k3] = (m[1 * 4 + 2] - s0 * m[2 * 4 + 1]) * s;

 mov ecx, [esi+eax+3*JOINTMAT_SIZE+0*16+3*4]
 mov [edi-1*JOINTQUAT_SIZE+16], ecx // q[4] = m[0 * 4 + 3];
 mov edx, [esi+eax+3*JOINTMAT_SIZE+1*16+3*4]
 mov [edi-1*JOINTQUAT_SIZE+20], edx // q[5] = m[1 * 4 + 3];
 mov ecx, [esi+eax+3*JOINTMAT_SIZE+2*16+3*4]
 mov [edi-1*JOINTQUAT_SIZE+24], ecx // q[6] = m[2 * 4 + 3];
 mov dword ptr [edi-1*JOINTQUAT_SIZE+28], 0 // q[7] = 0.0f;

 add eax, 4*JOINTMAT_SIZE
 jl loopMat4

 done4:
 mov eax, numJoints
 and eax, 3
 jz done1
 imul eax, JOINTMAT_SIZE
 add esi, eax
 neg eax

 loopMat1:
 movss xmm5, [esi+eax+0*JOINTMAT_SIZE+0*16+0*4]
 movss xmm6, [esi+eax+0*JOINTMAT_SIZE+1*16+1*4]
 movss xmm7, [esi+eax+0*JOINTMAT_SIZE+2*16+2*4]

 // -------------------

 movaps xmm0, xmm5
 addss xmm0, xmm6
 addss xmm0, xmm7
 cmpnltss xmm0, SIMD_SP_zero // xmm0 = m[0 * 4 + 0] + m[1 * 4 + 1] + m[2 * 4 + 2] > 0.0f

 movaps xmm1, xmm5
 movaps xmm2, xmm5
 cmpnltss xmm1, xmm6
 cmpnltss xmm2, xmm7
 andps xmm2, xmm1 // xmm2 = m[0 * 4 + 0] > m[1 * 4 + 1] && m[0 * 4 + 0] > m[2
* 4 + 2]

 movaps xmm4, xmm6
 cmpnltss xmm4, xmm7 // xmm3 = m[1 * 4 + 1] > m[2 * 4 + 2]

 movaps xmm1, xmm0
 andnps xmm1, xmm2
 orps xmm2, xmm0
 movaps xmm3, xmm2
 andnps xmm2, xmm4
 orps xmm3, xmm2
 xorps xmm3, SIMD_SP_not

 andps xmm0, SIMD_DW_mat2quatShuffle0
 movaps xmm4, xmm1
 andps xmm4, SIMD_DW_mat2quatShuffle1
 orps xmm0, xmm4
 movaps xmm4, xmm2
 andps xmm4, SIMD_DW_mat2quatShuffle2
 orps xmm0, xmm4
 movaps xmm4, xmm3
 andps xmm4, SIMD_DW_mat2quatShuffle3
 orps xmm4, xmm0

 movss shuffle, xmm4

 movaps xmm0, xmm2
 orps xmm0, xmm3 // xmm0 = xmm2 | xmm3 = s0
 orps xmm2, xmm1 // xmm2 = xmm1 | xmm2 = s2
 orps xmm1, xmm3 // xmm1 = xmm1 | xmm3 = s1

 andps xmm0, SIMD_SP_signBit
 andps xmm1, SIMD_SP_signBit
 andps xmm2, SIMD_SP_signBit

 xorps xmm5, xmm0
 xorps xmm6, xmm1
 xorps xmm7, xmm2
 addss xmm5, xmm6
 addss xmm7, SIMD_SP_one
 addss xmm5, xmm7 // xmm5 = t

 movss xmm7, xmm5 // xmm7 = t
 rsqrtss xmm6, xmm5
 mulss xmm5, xmm6
 mulss xmm5, xmm6
 subss xmm5, SIMD_SP_rsqrt_c0
 mulss xmm6, SIMD_SP_mat2quat_rsqrt_c1
 mulss xmm6, xmm5 // xmm5 = s

 mulss xmm7, xmm6 // xmm7 = s * t
 xorps xmm6, SIMD_SP_signBit // xmm6 = -s

 // -------------------

 movzx ecx, byte ptr shuffle[0] // ecx = k0
 add edi, JOINTQUAT_SIZE
 movss [edi+ecx*4-1*JOINTQUAT_SIZE], xmm7 // q[k0] = s * t;

 movzx edx, byte ptr shuffle[1] // edx = k1
 movss xmm4, [esi+eax+0*JOINTMAT_SIZE+1*16+0*4]
 xorps xmm4, xmm2
 subss xmm4, [esi+eax+0*JOINTMAT_SIZE+0*16+1*4]
 mulss xmm4, xmm6
 movss [edi+edx*4-1*JOINTQUAT_SIZE], xmm4 // q[k1] = (m[0 * 4 + 1] - s2 * m[1 * 4 + 0]) * s;

 movzx ecx, byte ptr shuffle[2] // ecx = k2
 movss xmm3, [esi+eax+0*JOINTMAT_SIZE+0*16+2*4]
 xorps xmm3, xmm1
 subss xmm3, [esi+eax+0*JOINTMAT_SIZE+2*16+0*4]
 mulss xmm3, xmm6
 movss [edi+ecx*4-1*JOINTQUAT_SIZE], xmm3 // q[k2] = (m[2 * 4 + 0] - s1 * m[0 * 4 + 2]) * s;

 movzx edx, byte ptr shuffle[3] // edx = k3
 movss xmm4, [esi+eax+0*JOINTMAT_SIZE+2*16+1*4]
 xorps xmm4, xmm0
 subss xmm4, [esi+eax+0*JOINTMAT_SIZE+1*16+2*4]
 mulss xmm4, xmm6
 movss [edi+edx*4-1*JOINTQUAT_SIZE], xmm4 // q[k3] = (m[1 * 4 + 2] - s0 * m[2 * 4 + 1]) * s;

 mov ecx, [esi+eax+0*JOINTMAT_SIZE+0*16+3*4]
 mov [edi-1*JOINTQUAT_SIZE+16], ecx // q[4] = m[0 * 4 + 3];
 mov edx, [esi+eax+0*JOINTMAT_SIZE+1*16+3*4]
 mov [edi-1*JOINTQUAT_SIZE+20], edx // q[5] = m[1 * 4 + 3];
 mov ecx, [esi+eax+0*JOINTMAT_SIZE+2*16+3*4]
 mov [edi-1*JOINTQUAT_SIZE+24], ecx // q[6] = m[2 * 4 + 3];
 mov dword ptr [edi-1*JOINTQUAT_SIZE+28], 0 // q[7] = 0.0f;

 add eax, JOINTMAT_SIZE
 jl loopMat1

 done1:
 }
}

	Abstract
	Introduction
	Previous Work
	Layout

	Quaternions and Rotation Matrices.
	Quaternion to Matrix
	Matrix to Quaternion
	Results
	Conclusion
	References
	Appendix A
	Appendix B
	From Quaternion to Matrix and Back.pdf
	Abstract
	1. Introduction
	1.1 Previous Work
	1.2 Layout

	2. Quaternions and Rotation Matrices.
	3. Quaternion to Matrix
	4. Matrix to Quaternion
	5. Results
	6. Conclusion
	7. References
	Appendix A
	Appendix B

